《The query-flow graph: model and applications》

原创 2012年03月31日 09:07:14

  1. Query graphs:

Baeza-Yates 指出有5种不同类型的图。在所有的方法中,结点是query;边被引入两个结点间。

word graph:两个query有共同的term

session graph:同一个session内的query。

url conver graph:用户点击了搜索结果中的相同的url。

url link graph:两个被点击的url直接有边

link graph:如果两个url有共同的term。


         2 Query Segmentation.

                    这里的query分割,不是对query的分词,而是对用户联系输入多个query,按照意图分割为多个session。

         3.基本概念:

Query log:一个query log,必须包含的,user id(cookie),time,query,click url,browser,refer url

Session:特定用户在具体时间限制内的Query

构建THE QUERY-FLOW GRAPH(查询流图)

根据Query-Query的转义概率统计得到 query flow graph。由于某些query之间无法统计,因此另外一种方法是构造模型来计算query pair之间的相关性。模型特征包括3种特征:文本特征,session特征,时间相关的特征。

计算方法:

变为TSP问题求解。

每周论文清单:知识图谱,文本匹配,图像翻译,视频对象分割

在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。点击本文底部的「阅读原文」即刻加入社区,查...
  • c9Yv2cf9I06K2A9E
  • c9Yv2cf9I06K2A9E
  • 2017年12月27日 00:00
  • 449

【学术研究】PGM(probability graph model)研究与应用

在知乎上大家对有没有必要系统学习概率图模型(PGM,graphical model)进行了讨论(https://www.zhihu.com/question/23255632),也许是概率图模型覆盖的...
  • u010882274
  • u010882274
  • 2017年06月12日 09:14
  • 157

Property Graph Model

Blueprints provides a set of interfaces for the property graph data model. An example instance is di...
  • macyang
  • macyang
  • 2014年09月03日 22:09
  • 1214

factor graph,potential function,Template models

factor是对于variables的某种combination的fitness。在BN中factor就是conditional probability distribution(CPD);但fact...
  • daocaorencrl
  • daocaorencrl
  • 2016年07月05日 17:23
  • 563

TransG : A Generative Model for Knowledge Graph Embedding ACL 2016.Berlin, Germany.

出发点:为了刻画关系的多语义性问题,一个关系应该有多种向量表示,不同的实体对在几何变换中应该采用不同的关系向量。因此,就提出了一种基于贝叶斯非参的无限混合嵌入模型:认为关系向量由若干子成分向量合成,模...
  • qq401466399
  • qq401466399
  • 2016年06月01日 14:22
  • 541

好书推荐《sparse modeling Theory, Algorithms, and Applications》稀疏学习

今天给大家推荐一本书《sparse modeling  Theory, Algorithms, and Applications》,大家一看名字就猜到内容了,关于稀疏学习的,如果对机器学习或者统计比较...
  • hfutxiaoguozhi
  • hfutxiaoguozhi
  • 2017年12月07日 22:32
  • 36

graph embedding(常见的图embedding的方法)

在图计算中,如何把图中的结点进行嵌入变成可计算的值或者向量一直是现在研究所关注的问题,初次学习,记录常用的embedding的方法。 主流方法主要有三大类: 1)factorization met...
  • ckqsars
  • ckqsars
  • 2017年10月09日 17:30
  • 2771

整理一些Markov Random Field以及Graph Model的基础学习资料

最近对于Markov Random Field等Graph Model有点兴趣,想系统学习一下这方面的知识。但是发现网上搜索的很多论文都是比较深入,不知道从何下手。下面是我收集到的一些不错的资料。 ...
  • tangl_99
  • tangl_99
  • 2010年11月07日 06:09
  • 14091

chapter 8:Graphical Models(图模型)

一:Introduction1:图由结点(node)和边(edge)组成,在概率图模型(probabilistic graphical model)中,每个结点表示一个随机变量或者一组随机变量,边表示...
  • weishenmetlc
  • weishenmetlc
  • 2016年09月19日 00:46
  • 287

什么是应用数学的能力

从小一直学数学,“数学对我们的影响是深刻的,是潜移默化的”大概每个数学老师都说过这么一句吧。数学卷子上能拿高分,应用起来却不能拿高分。学了离散数学,也不知道图可以用程序里边哪种数据结构可以表示。学了线...
  • u012995856
  • u012995856
  • 2016年12月02日 21:42
  • 334
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:《The query-flow graph: model and applications》
举报原因:
原因补充:

(最多只允许输入30个字)