在讲上篇Netty内存分配的时候,没有考虑本地线程的缓存,也就是Netty在分配内存时,首先尝试从线程本地缓存中去申请,如果申请失败,才从全局分配。本章就重点分析线程缓存相关的实现。首先我们将目光投向PooledByteBufAllocato的 final PoolThreadLocalCache threadCache;该类实现的机制类似ThreadLocal,我们重点看一下
1、PooledThreadLocalCache 源码分析
final class PoolThreadLocalCache extends FastThreadLocal<PoolThreadCache> {
private final AtomicInteger index = new AtomicInteger();
@Override
protected PoolThreadCache initialValue() {
final int idx = index.getAndIncrement();
final PoolArena<byte[]> heapArena;
final PoolArena<ByteBuffer> directArena;
if (heapArenas != null) {
heapArena = heapArenas[Math.abs(idx % heapArenas.length)];
} else {
heapArena = null;
}
if (directArenas != null) {
directArena = directArenas[Math.abs(idx % directArenas.length)];
} else {
directArena = null;
}
return new PoolThreadCache(
heapArena, directArena, tinyCacheSize, smallCacheSize, normalCacheSize,
DEFAULT_MAX_CACHED_BUFFER_CAPACITY, DEFAULT_CACHE_TRIM_INTERVAL);
}
@Override
protected void onRemoval(PoolThreadCache value) {
value.free();
}
}
上述的代码比较简单,就是每个线程轮询访问线程中的PoolArena.HeapArena、PoolArena.DirectArena。然后每个线程对象保存着PoolThreadCache对象。所谓的线程本地分配,也就是指的在PoolThreadCache中进行分配,二话不说,马上进入到PoolThreadCache源码中:
1.1 PoolThreadCache 属性与构造函数分析
final PoolArena<byte[]> heapArena; //使用轮叫轮询机制,每个线程从heapArena[]中获取一个,用于内存分配。
final PoolArena<ByteBuffer> directArena; //同上
// Hold the caches for the different size classes, which are tiny, small and normal. //针对不同大小,线程缓存的内存
private final MemoryRegionCache<byte[]>[] tinySubPageHeapCaches;
private final MemoryRegionCache<byte[]>[] smallSubPageHeapCaches;
private final MemoryRegionCache<ByteBuffer>[] tinySubPageDirectCaches;
private final MemoryRegionCache<ByteBuffer>[] smallSubPageDirectCaches;
private final MemoryRegionCache<byte[]>[] normalHeapCaches;
private final MemoryRegionCache<ByteBuffer>[] normalDirectCaches;
// Used for bitshifting when calculate the index of normal caches later
private final int numShiftsNormalDirect;
private final int numShiftsNormalHeap;
private final int freeSweepAllocationThreshold;
private int allocations;
private final Thread thread = Thread.currentThread(); //当前线程
private final Runnable freeTask = new Runnable() { //线程消亡后,释放资源,下文会重点讲解。
@Override
public void run() {
free0();
}
};
// TODO: Test if adding padding helps under contention
//private long pad0, pad1, pad2, pad3, pad4, pad5, pad6, pad7;
/*
* @param heapArena 线程使用的PoolArena.HeapArena
* @param directArena 线程使用的PoolArena.DirectArena
* @param tinyCacheSize, tiny内存缓存的个数。默认为512
* @param smallCacheSize small内存缓存的个数,默认为256个
* @param normalCacheSize normalCacheSize缓存的个数,默认为64
* @param maxCacheBufferCapacity
* normalHeapCaches中单个缓存区域的最大大小,默认为32k 也就是normalHeapCaches[length-1]中缓存的最大内存空间
* @param freeSweepAllocationThreshold 在本地线程每分配freeSweepAllocationThreshold 次内存后,检测一下是否需要释放内存。
*/
PoolThreadCache(PoolArena<byte[]> heapArena, PoolArena<ByteBuffer> directArena,
int tinyCacheSize, int smallCacheSize, int normalCacheSize,
int maxCachedBufferCapacity, int freeSweepAllocationThreshold) {
if (maxCachedBufferCapacity < 0) {
throw new IllegalArgumentException("maxCachedBufferCapacity: "
+ maxCachedBufferCapacity + " (expected: >= 0)");
}
if (freeSweepAllocationThreshold < 1) {
throw new IllegalArgumentException("freeSweepAllocationThreshold: "
+ maxCachedBufferCapacity + " (expected: > 0)");
}
this.freeSweepAllocationThreshold = freeSweepAllocationThreshold;
this.heapArena = heapArena;
this.directArena = directArena;
if (directArena != null) {
tinySubPageDirectCaches = createSubPageCaches(tinyCacheSize, PoolArena.numTinySubpagePools);
smallSubPageDirectCaches = createSubPageCaches(smallCacheSize, directArena.numSmallSubpagePools);
numShiftsNormalDirect = log2(directArena.pageSize);
normalDirectCaches = createNormalCaches(
normalCacheSize, maxCachedBufferCapacity, directArena);
} else {
// No directArea is configured so just null out all caches
tinySubPageDirectCaches = null;
smallSubPageDirectCaches = null;
normalDirectCaches = null;
numShiftsNormalDirect = -1;
}
if (heapArena != null) {
// Create the caches for the heap allocations
tinySubPageHeapCaches = createSubPageCaches(tinyCacheSize, PoolArena.numTinySubpagePools);
smallSubPageHeapCaches = createSubPageCaches(smallCacheSize, heapArena.numSmallSubpagePools);
numShiftsNormalHeap = log2(heapArena.pageSize);
normalHeapCaches = createNormalCaches(
normalCacheSize, maxCachedBufferCapacity, heapArena); //@1
} else {
// No heapArea is configured so just null out all caches
tinySubPageHeapCaches = null;
smallSubPageHeapCaches = null;
normalHeapCaches = null;
numShiftsNormalHeap = -1;
}
// The thread-local cache will keep a list of pooled buffers which must be returned to
// the pool when the thread is not alive anymore.
ThreadDeathWatcher.watch(thread, freeTask);
}
在方法前,已经对构造方法的入参加了说明,关注如下两个方法。
代码@1:创建createNormalCaches 。
由于PoolThreadCache的设计理念与PoolArena一样,本身并不涉及到具体内存的存储,PoolThreadCache内部维护MemoryRegionCache[] tinySubpageHeapCaches,MemoryRegionCache[] smallSubpageHeapCaches,其数组长度与PoolArena相同,MemoryRegionCaches[] normalHeapCaches,缓存的是noraml内存,Netty把大于pageSize小于chunkSize的空间成为normal内存。normalHeapCaches[1] 是normalHeapCaches[0] 的2倍, 先重点关注PoolThreadCache createNormalCaches 源码:
private static <T> NormalMemoryRegionCache<T>[] createNormalCaches(
int cacheSize, int maxCachedBufferCapacity, PoolArena<T> area) {
if (cacheSize > 0) {
int max = Math.min(area.chunkSize, maxCachedBufferCapacity); //@1
int arraySize = Math.max(1, max / area.pageSize); //@2
@SuppressWarnings("unchecked")
NormalMemoryRegionCache<T>[] cache = new NormalMemoryRegionCache[arraySize];
for (int i = 0; i < cache.length; i++) {
cache[i] = new NormalMemoryRegionCache<T>(cacheSize);
}
return cache;
} else {
return null;
}
}
参数 numCaches,为SubPageMemoryRegionCache[]数组的长度,而cacheSize,为每一个SubPageMemoryRegionCache中缓存的内存个数,也就是SubPageMemoryRegionCache中entries[]的长度。这里的cacheSize,就是PooledByteBufAllocator DEFAULT_TINY_CACHE_SIZE=512,DEFAULT_SMALL_CACHE_SIZE=256,DEFAULT_NORMAL_SIZE=64,其实这里的取名为DEFAULT_TINY_CACHE_LENGTH更加贴切。
代码@1:其实应该不需要与area.chunkSize做比较,因为如果超过chunkSize的内存,netty不会重复使用,直接在整个堆空间或堆外空间申请并释放。这里可能是出于代码的自我保护,得到normalHeapCaches中单个 Entry所持有的内存不超过该值。
代码@2:计算normalHeapCaches数组的长度,这里有优化的空间,用位运算:int arraySize = Math.max(1, max >> numShiftsNormalHeap ),其中numShiftsNormalHeap为 log2(pageSize)。这样做的原因,也就是normalHeapCaches 数组中的元素的大小,是以2的幂倍pageSize递增的。cacheSize默认为64,参数值来源于PooledByteBufAllocator。接下来关注PoolThreadCache的allocateTiny方法:
1.2 PoolThreadCache allocateTiny方法
/**
* Try to allocate a tiny buffer out of the cache. Returns {@code true} if successful {@code false} otherwise
*/
boolean allocateTiny(PoolArena<?> area, PooledByteBuf<?> buf, int reqCapacity, int normCapacity) {
return allocate(cacheForTiny(area, normCapacity), buf, reqCapacity);
}
private MemoryRegionCache<?> cacheForTiny(PoolArena<?> area, int normCapacity) {
int idx = PoolArena.tinyIdx(normCapacity);
if (area.isDirect()) {
return cache(tinySubPageDirectCaches, idx);
}
return cache(tinySubPageHeapCaches, idx);
}
/**
* Try to allocate a small buffer out of the cache. Returns {@code true} if successful {@code false} otherwise
*/
boolean allocateNormal(PoolArena<?> area, PooledByteBuf<?> buf, int reqCapacity, int normCapacity) {
return allocate(cacheForNormal(area, normCapacity), buf, reqCapacity);
}
private MemoryRegionCache<?> cacheForNormal(PoolArena<?> area, int normCapacity) {
if (area.isDirect()) {
int idx = log2(normCapacity >> numShiftsNormalDirect);
return cache(normalDirectCaches, idx);
}
int idx = log2(normCapacity >> numShiftsNormalHeap); //@1
return cache(normalHeapCaches, idx);
}
private boolean allocate(MemoryRegionCache<?> cache, PooledByteBuf buf, int reqCapacity) {
if (cache == null) {
// no cache found so just return false here
return false;
}
boolean allocated = cache.allocate(buf, reqCapacity); //@2
if (++ allocations >= freeSweepAllocationThreshold) {
allocations = 0;
trim(); //@3
}
return allocated;
}
代码@1:根据需要申请的内存定位数组的下标,根据上文讲解的数组长度计算逻辑,相应的定位算法就显而易见了。
代码@2:MeomoryRegionCache内部持有的 Entry entries[]数组是真正持有内存的单元,故现在将重点转移到MemoryRegionCache的讲解中。
代码@3:如果分配次数达到freeSweepAllocationThreshold,进行一次尝试释放一次。具体代码见 trim()方法的讲解。
1.2.1 关于PoolThreadCache allocateForTiny 之MemoryRegionCache 源码解读【针对1.2代码@2】
1)MemoryRegionCache属性与构造方法详解
private final Entry<T>[] entries; //MemoryRegionCache真正持有内存的地方
/*
private static final class Entry<T> {
PoolChunk<T> chunk; //具体的PoolChunk
long handle; //内存持有偏移量,高32位保存的是bitmaIdx,低32位保存的是memoryMapIdx
}
*/
private final int maxUnusedCached; //表示允许的最大的没有使用的内存数量(已经被缓存),默认为size的一半。
private int head; // 作用类似于ByteBuf的readerIndex,从该位置获取一个缓存的Entiry。
private int tail; // 作用类似于ByteBuf的writerIndex,从该位置增加一个加入一个新的Entity
private int maxEntriesInUse; // 在使用中最大的entry数量
private int entriesInUse; // 目前使用中的entry数量
@SuppressWarnings("unchecked")
MemoryRegionCache(int size) { // size 默认的大小为 512, 256, 64
entries = new Entry[powerOfTwo(size)];
for (int i = 0; i < entries.length; i++) {
entries[i] = new Entry<T>();
}
maxUnusedCached = size / 2; //允许被缓存,但没有使用的最大数量,超过该值,则会触发内存释放操作。
}
初始状态的MemoryRegionCache的各个属性的值分别为:
maxUnusedCached : 256,128,32,为size的一半;head:0 ;tail:0 ; maxEntriesInUse : 0; entriesInUse : 0
2)MemoryRegionCache的allocate方法详解
/**
* Allocate something out of the cache if possible and remove the entry from the cache.
*/
public boolean allocate(PooledByteBuf<T> buf, int reqCapacity) {
Entry<T> entry = entries[head]; //@1
if (entry.chunk == null) { //@2
return false;
}
entriesInUse ++; //@3
if (maxEntriesInUse < entriesInUse) {
maxEntriesInUse = entriesInUse;
}
initBuf(entry.chunk, entry.handle, buf, reqCapacity); //@4
// only null out the chunk as we only use the chunk to check if the buffer is full or not.
entry.chunk = null; //@5
head = nextIdx(head); //@6
return true;
}
代码@1:从entries数组中获取一个entry,head指针表示下一个缓存的Entry。
代码@2:如果entry.chunk为空,则表示线程里暂未缓存内存,返回false,表示从本地线程中分配失败。
代码@3:每分配出一个Entry,则entriesInUse加1,表示正在使用的entry个数。
代码@5:用entry中的内存初始化ByteBuf。
代码@6:head指针加一,如果超过entries的length,则重新从0开始,其实也就是 (head + 1) % (entires.length - 1),这里使用的是位运算。如果成功分配,则返回true, 结束本次内存的分配。
1.2.3 关于PoolThreadCache allocateForTiny 之代码@3,trim方法详解:
该方法的目的是在本地线程分配达到一定次数后,检测一下从本地线程缓存分配的效率,如果总是分配不到,就是虽然本地有缓存一定的内存,但每次分配都没有找到合适内存供分配,此时需要释内存回全局分配池,避免浪费内存。
void trim() {
trim(tinySubPageDirectCaches);
trim(smallSubPageDirectCaches);
trim(normalDirectCaches);
trim(tinySubPageHeapCaches);
trim(smallSubPageHeapCaches);
trim(normalHeapCaches);
}
private static void trim(MemoryRegionCache<?>[] caches) {
if (caches == null) {
return;
}
for (MemoryRegionCache<?> c: caches) {
trim(c);
}
}
private static void trim(MemoryRegionCache<?> cache) {
if (cache == null) {
return;
}
cache.trim();
}
trim的具体实现是MemoryRegionCache,现在进入到MemoryRegionCache详解:
/**
* Free up cached {@link PoolChunk}s if not allocated frequently enough.
*/
private void trim() {
int free = size() - maxEntriesInUse; //@1
entriesInUse = 0;
maxEntriesInUse = 0; //@2
if (free <= maxUnusedCached) { //@3
return;
}
int i = head;
for (; free > 0; free--) {
if (!freeEntry(entries[i])) {
// all freed
break;
}
i = nextIdx(i);
}
// Update head to point to te correct entry
// See https://github.com/netty/netty/issues/2924
head = i;
}
在进行该方法的实现逻辑之前,我先提供一张草图,形象的反映head,tail等说明:
代码@1:size()方法返回的是 (tail-head) & (length-1),表示当前缓存了但未被使用的个数。maxEntriesInUse的值,其实就是entiryesInUse的值。
代码@2:代码@3,如果缓存的并且未使用的个数如果小于允许的值(maxUnusedCached)值是放弃本次内存释放,否则,需要将head到tail这部分的内存全部释放,返回给全局内存分配池。这里我可能没有理解透彻,如果是我实现的话,entriesInUse该值不会设置为空,而是直接释放掉 tail-head这部分的内存就好,释放算法在内存分配与释放篇已经做过详细解读,这里不重复讲解:
@SuppressWarnings({ "unchecked", "rawtypes" })
private static boolean freeEntry(Entry entry) {
PoolChunk chunk = entry.chunk;
if (chunk == null) {
return false;
}
// need to synchronize on the area from which it was allocated before.
synchronized (chunk.arena) {
chunk.parent.free(chunk, entry.handle);
}
entry.chunk = null;
return true;
}
扫描一下MemoryRegionCache类,还有一个方法我们未曾分析过,就是add方法,默认一开始MemoryRegionCache类中的Entry[] entries中的PoolChunk与handle都是空的,只有通过该add方法,将线程用过的内存缓存起来才能重复使用。我们要养成这样一个习惯,一个ByteBuf用过后,需要调用realse方法将其释放,具体到池化的PooledByteBuf,调用其realse方法,并不会将内存直接返还给JVM堆,而是放入到内存池,供重复使用,由于引入了线程本地缓存,所以在调用PooledByteBuf的release方法时,并不会将它立马返回给内存池(PoolArena),而是放入到本地线程缓存中。
/**
* Add to cache if not already full.
*/
public boolean add(PoolChunk<T> chunk, long handle) {
Entry<T> entry = entries[tail];
if (entry.chunk != null) {
// cache is full
return false;
}
entriesInUse --;
entry.chunk = chunk;
entry.handle = handle;
tail = nextIdx(tail);
return true;
}
本地线程池关于内存的分配与释放旧梳理到这里了。
2、PooledByteBuf线程本地缓存专题(线程对象池)
到目前为止,我们更加关注的是PooledByteBuf内部持有的内存的管理,重复利用,显然Netty并不满足与此,PooledByteBuf本身是否也可以缓存呢?是的,一样可以缓存,并且netty从PooledByteBuf对象本身,指向的内存从两个方面进行缓存,回收利用,并不是将单一某个面进行一起缓存。下文,将从PooledByteBuf对象的回收利用这一层面进行Netty本地线程池来进行PooledByteBuf的重复利用。重复声明一下,PooledByteBuf对象池中缓存的PooledByteBuf,并没有任何缓存区(byte[]或java.nio.ByteBuffer)关联,只是PooledByteBuf本身,从对象池中获取一个PooledByteBuf后,还需要调用initBuf等方法进行内存的分配。
请看如下代码片段:来自PooledHeapByteBuf:
private static final Recycler<PooledHeapByteBuf> RECYCLER = new Recycler<PooledHeapByteBuf>() {
@Override
protected PooledHeapByteBuf newObject(Handle<PooledHeapByteBuf> handle) {
return new PooledHeapByteBuf(handle, 0);
}
};//@2
static PooledHeapByteBuf newInstance(int maxCapacity) {
PooledHeapByteBuf buf = RECYCLER.get(); //@1
buf.setRefCnt(1);
buf.maxCapacity(maxCapacity);
return buf;
}
关注代码@1,@2创建一个PooledHeapByteBuf,是从一个静态变量 RECYLER的get方法中获取,代码@2的写法是不是和ThreadLocal的使用非常类似,所以本专题的主角,就非Recycler莫属了。
2.1 Recycler构造方法核心属性
private static final int DEFAULT_MAX_CAPACITY; //对象池默认的最大容量
private static final int INITIAL_CAPACITY; //初始容量
private final int maxCapacity; //对象池的容量,由构造方法中进行初始化,默认为DEFAULT_MAX_CAPACITY。
private final FastThreadLocal<Stack<T>> threadLocal = new FastThreadLocal<Stack<T>>() {
@Override
protected Stack<T> initialValue() {
return new Stack<T>(Recycler.this, Thread.currentThread(), maxCapacity);
}
};
Recycler不是一普通的对象池,而是基于线程本地变量(缓存)实现的对象池,所以此处的threadLocal是Recycler中至关重要的数据结构。我们可以看出,Recycler为每个线程保持的是一叫Stack的对象。先跳过Statck,我们看一下Recycler对外提供了哪些方法供我们使用:
@SuppressWarnings("unchecked")
public final T get() {
Stack<T> stack = threadLocal.get();
DefaultHandle<T> handle = stack.pop();
if (handle == null) {
handle = stack.newHandle();
handle.value = newObject(handle);
}
return (T) handle.value;
}
public final boolean recycle(T o, Handle<T> handle) {
DefaultHandle<T> h = (DefaultHandle<T>) handle;
if (h.stack.parent != this) {
return false;
}
h.recycle(o);
return true;
}
看到这里,为了摸清楚Recycler的内部实现原理,我们只能将目光先投向Stack类。但一看又发现Statck内部维护着这样一个数据结构:DefaultHandle<?>[] elements;也就是一个Statck类维护这样一个DefaultHandle数组,所以,我们先将目光锁定在DefaultHandle上:
2.2 DefaultHandle源码详解
DefaultHandle,是对象池中最基本的单元,由该对象包裹着实际缓存的对象。
public interface Handle<T> { //负责对象回收接口
void recycle(T object);
}
static final class DefaultHandle<T> implements Handle<T> {
private int lastRecycledId; //@1
private int recycleId; //@2,这两个属性待分解
private Stack<?> stack; //该Handle所在的Statck对象,上面也谈到,Statck维护一个Handle数组
private Object value; //该对象就是对象池缓存的对象,这里用 private T value更合适。
DefaultHandle(Stack<?> stack) { // 构造函数
this.stack = stack;
}
@Override
public void recycle(Object object) {
if (object != value) {
throw new IllegalArgumentException("object does not belong to handle");
}
Thread thread = Thread.currentThread(); //@3
if (thread == stack.thread) { //@4
stack.push(this);
return;
}
// we don't want to have a ref to the queue as the value in our weak map
// so we null it out; to ensure there are no races with restoring it later
// we impose a memory ordering here (no-op on x86)
//@5 start
Map<Stack<?>, WeakOrderQueue> delayedRecycled = DELAYED_RECYCLED.get();
WeakOrderQueue queue = delayedRecycled.get(stack);
if (queue == null) {
delayedRecycled.put(stack, queue = new WeakOrderQueue(stack, thread));
}
queue.add(this); // @5 end
}
}
代码@1,@2:待下文分解。
代码@3:获取当前释放的线程。
代码@4:如果释放当前的线程与Statck对象保持一致,直接将对象放入到该线程对象的Statck中即可。
代码@5:大意是说我们不希望当前调用recycle方法的线程与Handle对象中statck对象的线程竟然不一致,我们需要强制一个内存排序,这个我就有点懵逼了。先理解一下该代码的含义:
将Handle对象放入到收集线程的本地缓存中,存放的是一个 Map<Stack<?>, WeakOrderQueue>,然后将Handle加入到WeakOrderQueue中,WeakOrderQueue里面存放的对象是基于一个WeakReference,弱引用,在垃圾回收的时候会被清除掉,放入进对象池中的对象,在什么地方取出来呢?是在Statck的pop方法中吗?有待进一步跟踪学习,还有根据这个收集线程的本地变量存放的类型来看,是个Map,说明不只一个键值对,那这个收集线程是什么来头呢?以上两个问题,暂时缓一缓,先移步到Statck类,分析完后,才回过头来思考。
2.3 Statck 源码分析
看一段官方的介绍:
// we keep a queue of per-thread queues, which is appended to once only, each time a new thread other
// than the stack owner recycles: when we run out of items in our stack we iterate this collection
// to scavenge those that can be reused. this permits us to incur minimal thread synchronisation whilst
// still recycling all items.
首先对于Statck目前,我只能理解放入elements中的对象,放入队列中对象,处了DefaultHandle中的 delayedRercycled有放入,但整个Recycler中未有相关使用语句,应该是Netty有额外的线程来辅助回收,这是个待定的问题?需要我慢慢去寻址。目前先按照常规流程讲解Statck,并抛出相关问题,希望大家予以帮助:
2.3.1 重要属性与构造函数解析
final Recycler<T> parent; //@1,Statck所在的对象池引用,回收器。
final Thread thread; // 该Statck对象关联的线程。
private DefaultHandle<?>[] elements; //存放具体对象的容器。
private final int maxCapacity; //允许存放的最大对象数,也就是elements数组的最大长度。
private int size; //当前elements中缓存对象的个数。
private volatile WeakOrderQueue head;
//Statck的另外一个对象的存放容器,是一个链表,目前没有搞懂它在什么时候会初始化。
private WeakOrderQueue cursor, prev;
Stack(Recycler<T> parent, Thread thread, int maxCapacity) {
this.parent = parent;
this.thread = thread;
this.maxCapacity = maxCapacity;
elements = new DefaultHandle[Math.min(INITIAL_CAPACITY, maxCapacity)];
}
构造函数,就是初始化elements,maxCapacity、thread,parent等基本属性,引用链并未初始化。了解完数据结构相关的关联关系后,我们再次回到Recycler的入口方法,get与recycler方法:
@SuppressWarnings("unchecked")
public final T get() {
Stack<T> stack = threadLocal.get();
DefaultHandle<T> handle = stack.pop();
if (handle == null) {
handle = stack.newHandle();
handle.value = newObject(handle);
}
return (T) handle.value;
}
public final boolean recycle(T o, Handle<T> handle) {
DefaultHandle<T> h = (DefaultHandle<T>) handle;
if (h.stack.parent != this) {
return false;
}
h.recycle(o);
return true;
}
上面两个方法,在了解其数据结构后,其实现思路应该很详细了,不做过多的讲解,值得留意的是Recycler是一个抽象类,需要有具体的子类在对象池中没有对象时,需要创建一个新的对象,具体创建对象的过程由其子类实现。
方法的签名:protected abstract T newObject(Handle<T> handle);
总结:
本文详细介绍了Netty线程本地内存的分配释放机制。同时提出Netty是将PooledByteBuf 与 PooledByteBuf执行的缓存区是单独进行管理的,PooledByteBuf指向的内存缓存区统一由Netty的内存分配,释放机制来管理,而与此同时,Netty实现了基于本地线程的对象池,用来重复利用PooledByteBuf本身这个对象,从Netty本地线程池获取的PooledByteBuf对象,不能直接使用,需要为它在申请内存进行初始化。本地线程池每一个线程关联一个Statck对象,该对象维护着两个仓库,一个是DefaultHandle[] entries,用来存放对象池,还维护了另外一仓库,是用WeakOrderQueue 来维护的队列,由于整个Recycler类中,并没有对WeakOrderQueue 的 head属性进行初始化,这里的机制目前我没有想明白,只是猜测,Netty除了我们手工调用 Recycler.recycle方法外,应该有外部线程,比如定时任务之类的线程进行回收,目前未找到,由于目前对Netty的全貌并不理解,该部分的问题先留着,待后续深入后再研究,也希望志同道合的朋友提供帮助,再次十分感谢。
欢迎加笔者微信号(dingwpmz),加群探讨,笔者优质专栏目录:
1、源码分析RocketMQ专栏(40篇+)
2、源码分析Sentinel专栏(12篇+)
3、源码分析Dubbo专栏(28篇+)
4、源码分析Mybatis专栏
5、源码分析Netty专栏(18篇+)
6、源码分析JUC专栏
7、源码分析Elasticjob专栏
8、Elasticsearch专栏
9、源码分析Mycat专栏