【第22期】观点:IT 行业加班,到底有没有价值?

数论

原创 2016年08月30日 21:55:51

1.最大公约数 gcd:

gcd(a,b)=gcd(b,a%b) - a%b=0时停止递归


2.最小公倍数 lcm:

a*b/gcd(a,b)

gcd满足左右同除:gcd(a,b)=p<=>gcd(a/p,b/p)=1;


3.模法

(a+b)%c=(a%c+b%c)%c
(a-b)%c=(a%c-b%c+c)%c
(a*b)%c=(a%c)*(b%c)%c


4.逆元

若(b*x)%c=1,
则(a/b)%c=(a*x)%c

? 费马小定理:(a^p)%p=a;
因此推出,(a/b)%c一式中,a^(c-2)是a的逆元
即(a/b)%c=a^(c-1)%c

5.欧拉函数

φ(N)定义为小于等于N且与N互质的正整数的个数。 
公式:φ(N)=N*(p1-1)(p2-1)···(pn-1)/p1*p2····*pn

6.快速幂

ll fast_pow(ll a,ll b){
    ll ans=1;
    for(;y;y>>=1,x=((x%k)*(x%k))%k)
        if(y&1) ans=((x%k)*(ans%k))%k;
    return ans;
}

•一 如何判断一定范围(比如1~10000)里有多少个素数?
·欧拉筛法

二 如何判断一个很大的数(比如10000000007)是不是素数?
·从2遍历到根号下N

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

转载==数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))

数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))     数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ...

ACM数论总结

断断续续的学习数论已经有一段时间了,学得也很杂,现在进行一些简单的回顾和总结。 学过的东西不能忘啊。。。 1、本原勾股数: 概念:一个三元组(a,b,c),其中a,b,c没有公因数而且满足:a^2+b^2=c^2 首先,这种本原勾股数的个数是无限的,而且构造的条件满足: a=s*t,b...

程序员升职加薪指南!还缺一个“证”!

CSDN出品,立即查看!

密码学笔记2 数论之趣

数论数论是纯粹数学的分支之一,主要研究整数的性质。整数可以是方程式的解(丢番图方程)。有些解析函数(像黎曼ζ函数)中包括了一些整数、质数的性质,透过这些函数也可以了解一些数论的问题。透过数论也可以建立...
  • xundh
  • xundh
  • 2017-07-11 08:37
  • 75

数论:从同余的观点出发

《数论:从同余的观点出发》基本信息作者: 蔡天新 [作译者介绍]出版社:高等教育出版社ISBN:9787040348347上架时间:2012-9-13<span style=

数论入门

基础数论入门
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)