求矩阵的n次方 快速幂

转载 2015年04月19日 19:07:05
矩阵的快速幂是用来高效地计算矩阵的高次方的。将朴素的o(n)的时间复杂度,降到log(n)。


这里先对原理(主要运用了矩阵乘法的结合律)做下简单形象的介绍:


一般一个矩阵的n次方,我们会通过连乘n-1次来得到它的n次幂。


但做下简单的改进就能减少连乘的次数,方法如下:


把n个矩阵进行两两分组,比如:A*A*A*A*A*A  =>  (A*A)*(A*A)*(A*A)


这样变的好处是,你只需要计算一次A*A,然后将结果(A*A)连乘自己两次就能得到A^6,即(A*A)^3=A^6。算一下发现这次一共乘了3次,少于原来的5次。


其实大家还可以取A^3作为一个基本单位。原理都一样:利用矩阵乘法的结合律,来减少重复计算的次数。


以上都是取一个具体的数来作为最小单位的长度,这样做虽然能够改进效率,但缺陷也是很明显的,取个极限的例子(可能有点不恰当,但基本能说明问题),当n无穷大的时候,你现在所取的长度其实和1没什么区别。所以就需要我们找到一种与n增长速度”相适应“的”单位长度“,那这个长度到底怎么去取呢???这点是我们要思考的问题。


有了以上的知识,我们现在再来看看,到底怎么迅速地求得矩阵的N次幂。


既然要减少重复计算,那么就要充分利用现有的计算结果咯!~怎么充分利用计算结果呢???这里考虑二分的思想。。


大家首先要认识到这一点:任何一个整数N,都能用二进制来表示。。这点大家都应该知道,但其中的内涵真的很深很深(这点笔者感触很深,在文章的最后,我将谈谈我对的感想)!!


计算机处理的是离散的信息,都是以0,1来作为信号的处理的。可想而知二进制在计算机上起着举足轻重的地位。它能将模拟信号转化成数字信号,将原来连续的实际模型,用一个离散的算法模型来解决。  好了,扯得有点多了,不过相信这写对下面的讲解还是有用的。


回头看看矩阵的快速幂问题,我们是不是也能把它离散化呢?比如A^19  =>  (A^16)*(A^2)*(A^1),显然采取这样的方式计算时因子数将是log(n)级别的(原来的因子数是n),不仅这样,因子间也是存在某种联系的,比如A^4能通过(A^2)*(A^2)得到,A^8又能通过(A^4)*(A^4)得到,这点也充分利用了现有的结果作为有利条件。下面举个例子进行说明:


现在要求A^156,而156(10)=10011100(2) 


也就有A^156=>(A^4)*(A^8)*(A^16)*(A^128)  考虑到因子间的联系,我们从二进制10011100中的最右端开始计算到最左端。细节就说到这,下面给核心代码:

while(N)
 {
                if(N&1)
                       res=res*A;
                n>>=1;
                A=A*A;
 }

里面的乘号,是矩阵乘的运算,res是结果矩阵。


第3行代码每进行一次,二进制数就少了最后面的一个1。二进制数有多少个1就第3行代码就执行多少次。


好吧,矩阵快速幂的讲解就到这里吧。在文章我最后给出我实现快速幂的具体代码(代码以3*3的矩阵为例)。


现在我就说下我对二进制的感想吧:


我们在做很多”连续“的问题的时候都会用到二进制将他们离散简化


1.多重背包问题


2.树状数组


3.状态压缩DP


……………还有很多。。。究其根本还是那句话:化连续为离散。。很多时候我们并不是为了解决一个问题而使用二进制,更多是时候是为了优化而使用它。所以如果你想让你的程序更加能适应大数据的情况,那么学习学习二进制及其算法思想将会对你有很大帮助。


最后贴出一些代码供大家学习,主要起演示的效果:

#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <iostream> 
using namespace std;

int N;

struct matrix
{
       int a[3][3];
}origin,res;


matrix multiply(matrix x,matrix y)
{
       matrix temp;
       memset(temp.a,0,sizeof(temp.a));
       for(int i=0;i<3;i++)
       {
               for(int j=0;j<3;j++)
               {
                       for(int k=0;k<3;k++)
                       {
                               temp.a[i][j]+=x.a[i][k]*y.a[k][j];
                       }
               }
       }
       return temp;
}

void init()
{
     printf("随机数组如下:\n");
     for(int i=0;i<3;i++)
     {
             for(int j=0;j<3;j++)
             {
                     origin.a[i][j]=rand()%10;
                     printf("%8d",origin.a[i][j]);
             }
             printf("\n");
     }
     printf("\n");
     memset(res.a,0,sizeof(res.a));
     res.a[0][0]=res.a[1][1]=res.a[2][2]=1;                  //将res.a初始化为单位矩阵 
}

void calc(int n)
{
     while(n)
     {
             if(n&1)
                    res=multiply(res,origin);
             n>>=1;
             origin=multiply(origin,origin);
     }
     printf("%d次幂结果如下:\n",n);
     for(int i=0;i<3;i++)
     {
             for(int j=0;j<3;j++)
                     printf("%8d",res.a[i][j]);
             printf("\n");
     }
     printf("\n");
}
int main()
{
    while(cin>>N)
    {
            init();
            calc(N);
    }
    return 0;
}





相关文章推荐

关于矩阵N次方的一个比较快速算法

昨天晚上看到了一道求解斐波那契数的编程题,里边介绍了通过矩阵来计算的办法。现将题摘录如下 Fibonacci数列是满足如下条件的整数数列: F0 = 0 F1 = 1 FN = FN-1+...

unity地形编辑扩展插件Landspace Auto Material介绍

LAM是一套针对复杂地形和植物的编辑工具, 增加了一些unity自带地形编辑器没有的功能, 对其用法做一下简单介绍。

关注CSDN程序人生公众号,轻松获得下载积分

关注公众号 在公众号里回复“”秘密“”两个字 返回 http://task.csdn.net/m/task/home?task_id=398 领取奖励 提示:根据公众号里的自动回复,完成...

Android eclipse unable to launch:The selection can not be launched,and there are no recent launches

出现这个问题基本就是两方面的问题: 1:代码问题 没有启动的入口。可以检查有没有缺少static什么的 2:所有代码都启动不了,那就是eclipse 的问题,最大的问题可能就是JDK问题   2.1 ...

Java 数据结构和算法 概述

数据结构 数据结构是对在计算机内存中(有时在磁盘中)的数据的一种安排,数据结构包括数组、链表、栈、二叉树、哈希表等等,算法对这些结构中的数据进行各种处理,例如查找一条特殊的数据或者对数据进行排序。...

目标检测和跟踪小结

一、目标检测目标检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测。1.静态背景 背景差分法 帧间差分法 光...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)