再理解RankNet算法

原创 2015年02月09日 09:44:09

再理解RankNet算法

     

    前面的一篇博文介绍了学习排序算法(Learning to Rank)中的RankNet算法。如下:

http://blog.csdn.net/puqutogether/article/details/42124491


    那次的入门对其中的算法流程和基本原理没有深入了解,这次看自动摘要提取算法的时候,里面有一个排序单元,使用到的就是学习排序算法中的RankNet,这个时候才理解了。这就说明,有的时候回过头来看某些算法,你的认识会加深的。


   好了,这次主要说一下RankNet这个算法的基本流程和原理。


    RankNet算法是从概率的角度解决排序问题。


    首先,我们需要求得的是一个排序函数,就是当我们输入样本的特征向量的时候,可以输出该样本的顺序“得分”,实现排序。在RankNet中,排序函数定义为一个三层的神经网络模型。输入层和样本特征维数有关,输出层是一个节点(得分),排序函数定义为:


其中权值参数w和偏置参数b的上标表示节点所在的层,下标表示同一层中节点的编号;x_n_k表示特征向量x_n的第k个分量,这是是输入到输入层的。f_x_n的输出就是一个得分。


    然后,由于RankNet是一个pairwise的排序学习算法,把样本两两组成一个pair,对于一个pair,有两个概率需要定义,一个是预测概率:


其物理意义就是第i个样本排在第j个样本前面的概率,其中的s_i和s_ j的都是前面排序函数的输出得分。

还有一个概率是真实概率,定义如下:

其中For a given query, let S_i_ j∈ {0, ±1} be defined to be 1 if document i has been labeled to be more relevant than document j, −1 if document i has been labeled to be less relevant than document j, and 0 if they have the same label. 

    然后,基于交叉熵函数建立RankNet算法的损失函数,并用梯度下降法解决。如下:


上式我们可以化简,如下:


(好吧,天气寒冷,手抖……)

也就是下面这个式子:


    最后,我们让损失函数C对排序函数中的w求导,可以得到:


=》


=》



代入可得损失函数C关于w的偏导了,这样就可以使用梯度下降法了。


最终求得排序函数f_x_n。

    

     可以看书,RankNet算法在学习过程中,用到了一对样本之间的关系,主要在预测概率部分,所以它是一个pairwise的方法。




参考:

http://blog.csdn.net/puqutogether/article/details/42124491

From RankNet to LambdaRank to LambdaMART: An Overview        Christopher J.C. Burges

http://blog.csdn.net/huagong_adu/article/details/40710305












版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

学习排序算法(二):Pairwise方法之RankNet

学习排序算法(二):Pairwise方法之RankNet 前面一篇博文介绍的Ranking SVM是把LTR问题转化为二值分类问题,而RankNet算法是从另外一个角度来解决,那就是概率的...

再理解RankNet算法

再理解RankNet算法 前面的一篇博文介绍了学习排序算法(Learning to Rank)中的RankNet算法。如下:http://blog.csdn.net/puqutogether/arti...

RankNet学习思路

整理了一下学习ranknet需要知道的几点: 1、ranknet是从概率角度,利用pairwise解决排序问题; 2、最终我们学习的是一个为搜索结果打分的函数(Scoring Function),这个...

什么叫共轭先验或者共轭分布?

如果你读过贝叶斯学习方面的书或者论文,想必是知道共轭先验这个名词的。 现在假设你闭上眼睛,你能准确地说出共轭分布是指哪个分布和哪个分布式共轭的吗? 我之前就常常把这个关系弄错,现在记录如下,以加强...

主题模型TopicModel:主题模型LDA的应用

http://blog.csdn.net/pipisorry/article/details/45665779 应用于推荐系统 在使用LDA(Latent Dirichlet Allocation)...

主题模型TopicModel:隐含狄利克雷分布LDA

http://blog.csdn.net/pipisorry/article/details/42649657主题模型LDA简介隐含狄利克雷分布简称LDA(Latent Dirichlet alloc...

二元语法模型与viterbi算法分词

注意:本篇博文标红字部分为一处笔误的改正。非常感谢猎兔网 开发工程师 罗刚指出错误。欢迎大家光临我的博客指正各种思维不周,本人不拒绝严格的批评,只要能指出具体错误,和改进方案 采用这种方法首...

卷积神经网络在NLP领域的实践:文本分类[转]

卷积神经网络(CNN)在计算机视觉领域取得了极大的进展,但是除此之外CNN也逐渐在自然语言处理(NLP)领域攻城略地。本文主要以文本分类为例,介绍卷积神经网络在NLP领域的一个基本使用方法。 ...

Weka中的ARFF文件

Weka中用的ARFF文件格式分为两部分:Header 和Data。其中Header部分用于定义Relation的名字、一系列Attribute的名字和类型,比如: @RELATION iri...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)