再理解RankNet算法

再理解RankNet算法

     

    前面的一篇博文介绍了学习排序算法(Learning to Rank)中的RankNet算法。如下:

http://blog.csdn.net/puqutogether/article/details/42124491


    那次的入门对其中的算法流程和基本原理没有深入了解,这次看自动摘要提取算法的时候,里面有一个排序单元,使用到的就是学习排序算法中的RankNet,这个时候才理解了。这就说明,有的时候回过头来看某些算法,你的认识会加深的。


   好了,这次主要说一下RankNet这个算法的基本流程和原理。


    RankNet算法是从概率的角度解决排序问题。


    首先,我们需要求得的是一个排序函数,就是当我们输入样本的特征向量的时候,可以输出该样本的顺序“得分”,实现排序。在RankNet中,排序函数定义为一个三层的神经网络模型。输入层和样本特征维数有关,输出层是一个节点(得分),排序函数定义为:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值