关闭

DP 动态规划 Problem V 1022 反向考虑的背包

标签: dp动态规划背包问题ACM算法
391人阅读 评论(0) 收藏 举报
分类:

Problem V  ID:1022


简单题意:某人准备抢银行,可以承受的最大被抓的概率为p(总共),共有n个银行可抢,分别给出各个银行所拥有的money:mi,抢各个银行被抓的概率pi。求可以抢到的最大金额。


解题思路形成过程:因为概率值的范围为0~1,即有小数,所以必须反向来考虑。

            可以承受的最大被抓的概率为p,即:如果逃跑的概率大于1-p则符合要求。

            将所有银行的总钱数作为背包的容量,dp数组各元素对应的值为逃跑的概率。

            如果抢两个银行i和j,则逃跑概率为(1-pi)*(1-pj),即两个银行逃跑的概率之积。(涉及到概率论)

            状态转移方程为:dp[j]=max(dp[j],dp[j-a[i]]*(1-b[i]));

            dp数组中逃跑率符合要求且下标最大的一个所对应的下标即为所求答案。


感想:一开始被样例给带跑偏了,还以为会出现的概率是精确到小数点后两位的,而实际上并不是。这就决定了很难用常用的背包思想去解决这个问题。

    要学会去反向思考,要求是被抓的概率要符合要求,那逃跑的概率符合要求是否可以?dp数组要存的元素能不能存经常存的下标?


代码:
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
double dp[10001];
int a[101];
double b[101];
int main()
{
    //freopen("1.txt","r",stdin);
    int t;
    scanf("%d",&t);
    while(t--)
    {
        memset(dp,0,sizeof(dp));
        double p;
        int n,sum=0;
        scanf("%lf%d",&p,&n);
        for(int i=0; i<n; ++i)
        {
            scanf("%d%lf",&a[i],&b[i]);
            sum+=a[i];
        }
        dp[0]=1;
        for(int i=0; i<n; ++i)
            for(int j=sum; j>=a[i]; --j)
                dp[j]=max(dp[j],dp[j-a[i]]*(1-b[i]));
        for(int i=sum; i>=0; --i)
        {
            if(dp[i]>1-p)
            {
                printf("%d\n",i);
                break;
            }
        }
    }
    return 0;
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:17379次
    • 积分:635
    • 等级:
    • 排名:千里之外
    • 原创:48篇
    • 转载:0篇
    • 译文:0篇
    • 评论:1条
    文章分类
    最新评论