描述
上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中,
小Ho发现他不仅仅可以拼凑成一棵二叉树!还可以拼凑成一棵多叉树——好吧,其实就是更为平常的树而已。
但是不管怎么说,小Ho喜爱的玩具又升级换代了,于是他更加爱不释手。小Ho手中的这棵玩具树现在由N个
小球和N-1根木棍拼凑而成,这N个小球都被小Ho标上了不同的数字,并且这些数字都是出于1..N的范围之内,
每根木棍都连接着两个不同的小球,并且保证任意两个小球间都不存在两条不同的路径可以互相到达。
但是小Hi瞧见小Ho这个样子,觉得他这样沉迷其中并不是一件好事,于是寻思着再找点问题让他来思考思考。
“我的问题很简单,就是——你这棵树中哪两个结点之间的距离最长?当然,这里的距离是指从一个结点走到
另一个结点经过的木棍数。”。
“啊?”小Ho低头看了看手里的玩具树,困惑了。
提示一:路总有折点,路径也不例外!输入
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第一行为一个整数N,意义如前文所述。
每组测试数据的第2~N行,每行分别描述一根木棍,其中第i+1行为两个整数Ai,Bi,表示第i根木棍连接的两个小球的编号。
对于20%的数据,满足N<=10。
对于50%的数据,满足N<=10^3。
对于100%的数据,满足N<=10^5,1<=Ai<=N, 1<=Bi<=N
小Hi的Tip:那些用数组存储树边的记得要开两倍大小哦!
输出
对于每组测试数据,输出一个整数Ans,表示给出的这棵树中距离最远的两个结点之间相隔的距离。
8
1 2
1 3
1 4
4 5
3 6
6 7
7 8
样例输出
6
#include
#include
#include
std::vector
a[100001];
bool visit[100001];
int max, flag;
void find(int u, int num)
{
visit[u] = 1;
if(a[u].size() == 1 && num > max)
{
max = num;
flag = u;
}
for(int i = 0; i < a[u].size(); i++)
{
if(!visit[a[u][i]])
find(a[u][i], num + 1);
}
}
int main(void)
{
int i, n, x, y;
std::cin>>n;
for(i = 1; i < n; i++)
{
std::cin>>x>>y;
a[x].push_back(y);
a[y].push_back(x);
}
find(1, 0);
max = 0;
memset(visit, 0, sizeof(visit));
find(flag, 0);
std::cout<
<