关闭

二分查找

标签: 算法竞赛算法二分查找
486人阅读 评论(0) 收藏 举报
分类:

二分查找

二分查找在有序表里面,是非常常用的查找元素方式,其时间复杂度为log2n,该算法也可以用分治法进行表示。

突然发现一问题,常见区间范围一般都是以[x,y)左闭右开这个的形式来进行表示的,个人写的却是[x,y]闭区间。这是一个问题,希望以后能够以前一种范围来考虑问题。

分治三步骤
划分问题:将有序表划尽可能划分为相等的两部分[left,middle)(middle,right]
递归求解:如果查找元素值v<middle位置的值的话,在区间[left,middle)递归查找,如果查找元素值v>middle位置的值的话,在区间(middle,right]递归查找,如果元素值v=middle位置的值的话,返回middle。递归出口为left>right,返回值设为1,表示没找到该元素。
合并问题:该问题不需要合并。

递归实现

// 二分查找递归实现
int binSearchRecusion(int *a, int lef, int righ, int v) {
    // 未找到元素
    if(lef > righ) {
        return -1;
    }
    // 取中值
    int middle = lef + (righ - lef) / 2;
    if(v > a[middle]) {
        return binSearchRecusion(a, middle + 1, righ, v);
    } else if(v < a[middle]) {
        return binSearchRecusion(a, lef, middle - 1, v);
    } else {
        return middle;
    }
}

除了递归实现外,还可以用迭代实现该算法:

迭代实现

// 二分查找迭代实现
int binSearchIteration(int *a, int lef, int righ, int v) {
    int middle;
    while(lef <= righ) {
        // 取中值
        middle = lef + (righ - lef) / 2;
        if(v > a[middle]) {
            lef = middle + 1;
        } else if(v < a[middle]) {
            righ = middle - 1;
        } else {
            return middle;
        }
    }
    return -1;
}

测试主程序

#include <iostream>

using namespace std;

// 二分查找递归实现
int binSearchRecusion(int *a, int lef, int righ, int v) {
    // 未找到元素
    if(lef > righ) {
        return -1;
    }
    // 取中值
    int middle = lef + (righ - lef) / 2;
    if(v > a[middle]) {
        return binSearchRecusion(a, middle + 1, righ, v);
    } else if(v < a[middle]) {
        return binSearchRecusion(a, lef, middle - 1, v);
    } else {
        return middle;
    }
}

// 二分查找迭代实现
int binSearchIteration(int *a, int lef, int righ, int v) {
    int middle;
    while(lef <= righ) {
        // 取中值
        middle = lef + (righ - lef) / 2;
        if(v > a[middle]) {
            lef = middle + 1;
        } else if(v < a[middle]) {
            righ = middle - 1;
        } else {
            return middle;
        }
    }
    return -1;
}


int binSearch(int *a, int n, int v) {
//    return binSearchRecusion(a, 0, n - 1, v);
    return binSearchIteration(a, 0, n - 1, v);
}

int main() {
    int a[] = {-10, -5, 0, 1, 3, 5, 10};
    int n = 7;
    int v = -100;
    cout << "元素" << v << "在a中的位置是:" << binSearch(a, n, v) << endl;
    v = -10;
    cout << "元素" << v << "在a中的位置是:" << binSearch(a, n, v) << endl;
    v = 0;
    cout << "元素" << v << "在a中的位置是:" << binSearch(a, n, v) << endl;
    v = 3;
    cout << "元素" << v << "在a中的位置是:" << binSearch(a, n, v) << endl;
    v = 10;
    cout << "元素" << v << "在a中的位置是:" << binSearch(a, n, v) << endl;
    v = 100;
    cout << "元素" << v << "在a中的位置是:" << binSearch(a, n, v) << endl;
    return 0;
}

输出数据

元素-100a中的位置是:-1
元素-10a中的位置是:0
元素0a中的位置是:2
元素3a中的位置是:4
元素10a中的位置是:6
元素100a中的位置是:-1

Process returned 0 (0x0)   execution time : 0.080 s
Press any key to continue.
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:874876次
    • 积分:12110
    • 等级:
    • 排名:第1382名
    • 原创:426篇
    • 转载:4篇
    • 译文:0篇
    • 评论:150条
    联系方式
    博客专栏
    最新评论