关闭

二分查找求上界和下界

标签: 算法竞赛算法二分查找上界下界
1021人阅读 评论(0) 收藏 举报
分类:

二分查找求上界和下界

假设序列有序,其区间为[left,right),设middle为区间中间值,现在需要获得首个出现元素v的位置,如果不存在,返回一个位置,在此插入v,序列仍然有序,则可以通过以下方式求出:

  • if middle位置的值 = v:至少已经找到一个,左边可能还有,则区间变为[left,middle]
  • if middle位置的值 > v:所求位置不可能在后面,但可能是middle,则区间变为[left,middle]
  • if middle位置的值 < v:middle和前面都不可行,则区间变为[middle+1,right]

求下界算法实现

// 二分查找求下界
int lowerBound(int *a, int lef, int righ, int v) {
    int middle;
    while(lef < righ) {
        // 取中值
        middle = lef + (righ - lef) / 2;
        if(v <= a[middle]) {
            righ = middle;
        } else {
            lef = middle + 1;
        }
    }
    return lef;
}

同理也可以求出上界,因为[x,y)左闭右开,返回的将是它出现的最后一个位置的下一个位置,不存在的情况和下界一样。

求上界算法实现

// 二分查找求上界
int upperBound(int *a, int lef, int righ, int v) {
    int middle;
    while(lef < righ) {
        // 取中值
        middle = lef + (righ - lef) / 2;
        if(v >= a[middle]) {
            lef = middle + 1;
        } else {
            righ = middle;
        }
    }
    return lef;
}

测试主程序

#include <iostream>

using namespace std;

// 二分查找求下界
int lowerBound(int *a, int lef, int righ, int v) {
    int middle;
    while(lef < righ) {
        // 取中值
        middle = lef + (righ - lef) / 2;
        if(v <= a[middle]) {
            righ = middle;
        } else {
            lef = middle + 1;
        }
    }
    return lef;
}

// 二分查找求上界
int upperBound(int *a, int lef, int righ, int v) {
    int middle;
    while(lef < righ) {
        // 取中值
        middle = lef + (righ - lef) / 2;
        if(v >= a[middle]) {
            lef = middle + 1;
        } else {
            righ = middle;
        }
    }
    return lef;
}




int main() {
    int a[] = {-10, -5, 0, 0, 1, 3, 3, 3, 5, 10};
    int n = 10;
    int v = -100;
    cout << "元素" << v << "在a中的下界位置是:" << lowerBound(a, 0, n, v) << endl;
    v = -10;
    cout << "元素" << v << "在a中的下界位置是:" << lowerBound(a, 0, n, v) << endl;
    v = 0;
    cout << "元素" << v << "在a中的下界位置是:" << lowerBound(a, 0, n, v) << endl;
    v = 3;
    cout << "元素" << v << "在a中的下界位置是:" << lowerBound(a, 0, n, v) << endl;
    v = 10;
    cout << "元素" << v << "在a中的下界位置是:" << lowerBound(a, 0, n, v) << endl;
    v = 100;
    cout << "元素" << v << "在a中的下界位置是:" << lowerBound(a, 0, n, v) << endl;

    cout << endl << endl;

    v = -100;
    cout << "元素" << v << "在a中的上界位置是:" << upperBound(a, 0, n, v) << endl;
    v = -10;
    cout << "元素" << v << "在a中的上界位置是:" << upperBound(a, 0, n, v) << endl;
    v = 0;
    cout << "元素" << v << "在a中的上界位置是:" << upperBound(a, 0, n, v) << endl;
    v = 3;
    cout << "元素" << v << "在a中的上界位置是:" << upperBound(a, 0, n, v) << endl;
    v = 10;
    cout << "元素" << v << "在a中的上界位置是:" << upperBound(a, 0, n, v) << endl;
    v = 100;
    cout << "元素" << v << "在a中的上界位置是:" << upperBound(a, 0, n, v) << endl;

    return 0;
}

输出数据

元素-100a中的下界位置是:0
元素-10a中的下界位置是:0
元素0a中的下界位置是:2
元素3a中的下界位置是:5
元素10a中的下界位置是:9
元素100a中的下界位置是:10


元素-100a中的上界位置是:0
元素-10a中的上界位置是:1
元素0a中的上界位置是:4
元素3a中的上界位置是:8
元素10a中的上界位置是:10
元素100a中的上界位置是:10

Process returned 0 (0x0)   execution time : 1.609 s
Press any key to continue.
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:757840次
    • 积分:11056
    • 等级:
    • 排名:第1440名
    • 原创:422篇
    • 转载:4篇
    • 译文:0篇
    • 评论:138条
    联系方式
    博客专栏
    最新评论