关闭

二分查找求上界和下界

标签: 算法竞赛算法二分查找上界下界
1651人阅读 评论(0) 收藏 举报
分类:

二分查找求上界和下界

假设序列有序,其区间为[left,right),设middle为区间中间值,现在需要获得首个出现元素v的位置,如果不存在,返回一个位置,在此插入v,序列仍然有序,则可以通过以下方式求出:

  • if middle位置的值 = v:至少已经找到一个,左边可能还有,则区间变为[left,middle]
  • if middle位置的值 > v:所求位置不可能在后面,但可能是middle,则区间变为[left,middle]
  • if middle位置的值 < v:middle和前面都不可行,则区间变为[middle+1,right]

求下界算法实现

// 二分查找求下界
int lowerBound(int *a, int lef, int righ, int v) {
    int middle;
    while(lef < righ) {
        // 取中值
        middle = lef + (righ - lef) / 2;
        if(v <= a[middle]) {
            righ = middle;
        } else {
            lef = middle + 1;
        }
    }
    return lef;
}

同理也可以求出上界,因为[x,y)左闭右开,返回的将是它出现的最后一个位置的下一个位置,不存在的情况和下界一样。

求上界算法实现

// 二分查找求上界
int upperBound(int *a, int lef, int righ, int v) {
    int middle;
    while(lef < righ) {
        // 取中值
        middle = lef + (righ - lef) / 2;
        if(v >= a[middle]) {
            lef = middle + 1;
        } else {
            righ = middle;
        }
    }
    return lef;
}

测试主程序

#include <iostream>

using namespace std;

// 二分查找求下界
int lowerBound(int *a, int lef, int righ, int v) {
    int middle;
    while(lef < righ) {
        // 取中值
        middle = lef + (righ - lef) / 2;
        if(v <= a[middle]) {
            righ = middle;
        } else {
            lef = middle + 1;
        }
    }
    return lef;
}

// 二分查找求上界
int upperBound(int *a, int lef, int righ, int v) {
    int middle;
    while(lef < righ) {
        // 取中值
        middle = lef + (righ - lef) / 2;
        if(v >= a[middle]) {
            lef = middle + 1;
        } else {
            righ = middle;
        }
    }
    return lef;
}




int main() {
    int a[] = {-10, -5, 0, 0, 1, 3, 3, 3, 5, 10};
    int n = 10;
    int v = -100;
    cout << "元素" << v << "在a中的下界位置是:" << lowerBound(a, 0, n, v) << endl;
    v = -10;
    cout << "元素" << v << "在a中的下界位置是:" << lowerBound(a, 0, n, v) << endl;
    v = 0;
    cout << "元素" << v << "在a中的下界位置是:" << lowerBound(a, 0, n, v) << endl;
    v = 3;
    cout << "元素" << v << "在a中的下界位置是:" << lowerBound(a, 0, n, v) << endl;
    v = 10;
    cout << "元素" << v << "在a中的下界位置是:" << lowerBound(a, 0, n, v) << endl;
    v = 100;
    cout << "元素" << v << "在a中的下界位置是:" << lowerBound(a, 0, n, v) << endl;

    cout << endl << endl;

    v = -100;
    cout << "元素" << v << "在a中的上界位置是:" << upperBound(a, 0, n, v) << endl;
    v = -10;
    cout << "元素" << v << "在a中的上界位置是:" << upperBound(a, 0, n, v) << endl;
    v = 0;
    cout << "元素" << v << "在a中的上界位置是:" << upperBound(a, 0, n, v) << endl;
    v = 3;
    cout << "元素" << v << "在a中的上界位置是:" << upperBound(a, 0, n, v) << endl;
    v = 10;
    cout << "元素" << v << "在a中的上界位置是:" << upperBound(a, 0, n, v) << endl;
    v = 100;
    cout << "元素" << v << "在a中的上界位置是:" << upperBound(a, 0, n, v) << endl;

    return 0;
}

输出数据

元素-100a中的下界位置是:0
元素-10a中的下界位置是:0
元素0a中的下界位置是:2
元素3a中的下界位置是:5
元素10a中的下界位置是:9
元素100a中的下界位置是:10


元素-100a中的上界位置是:0
元素-10a中的上界位置是:1
元素0a中的上界位置是:4
元素3a中的上界位置是:8
元素10a中的上界位置是:10
元素100a中的上界位置是:10

Process returned 0 (0x0)   execution time : 1.609 s
Press any key to continue.
0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

二分查找上界和下界

详细见详细见《算法竞赛入门》P229 这里用的是左闭右开空间[left , right) upper_bound返回的是target应该插入的位置或者最后一次出现位置的下一个位置 这里的实现就跟STL...
  • gao1440156051
  • gao1440156051
  • 2016-01-26 13:49
  • 826

二分查找求上下界的两种不同算法

在学习LIS的O(nlogn)的算法时看到了二分法求下界的概念,所以回白书学习了一下在有序表中查找元素时经常用到二分法,普通的二分查找很简单,就是不断改变区间。二分查找只适用于有序数列,时间复杂度为O...
  • SeasonJoe
  • SeasonJoe
  • 2015-11-22 10:40
  • 1066

上界,下界,二分查找

直接上代码了 有注释 //Author: laserss //Time : 2012/11/14 //email : dellaser@163.com #include #...
  • dellaserss
  • dellaserss
  • 2012-11-14 20:45
  • 1742

二分查找求上、下界

提一个有趣的问题:如果数组中有多个元素是v,上面的函数返回的是哪一个下标呢?下面的程序返回它出现的第一个位置。如果不存在,返回这样一个下标i:在此处插入v,(原来的元素A[i],A[i+1]....,...
  • Wall_F
  • Wall_F
  • 2012-12-14 17:08
  • 3007

二分查找求上下界的两种不同算法

在学习LIS的O(nlogn)的算法时看到了二分法求下界的概念,所以回白书学习了一下在有序表中查找元素时经常用到二分法,普通的二分查找很简单,就是不断改变区间。二分查找只适用于有序数列,时间复杂度为O...
  • SeasonJoe
  • SeasonJoe
  • 2015-11-22 10:40
  • 1066

Leetcode分类解析:二分查找

Leetcode分类解析:二分查找1.原始二分查找1.1 典型例题35-Search Insert Position (Medium): Given a sorted array and a targ...
  • dc_726
  • dc_726
  • 2016-08-14 09:04
  • 2678

matlab图像处理之二值图像内外边界跟踪

matlab图像处理之二值图像内外边界跟踪 注:原文链接:http://www.cnblogs.com/tiandsp/archive/2013/04/26/3045747.html        目...
  • zhangyibo123456789
  • zhangyibo123456789
  • 2017-03-09 10:40
  • 1308

二分法(查找、求上界、求下界)

【解析】 二分查找的话相信大家都有一定的了解过,其实就是不断的缩小范围,不断的缩小范围话不多说上代码。int erfen(int k[],int n,int k) { int left=0,...
  • ZCMUCZX
  • ZCMUCZX
  • 2016-12-27 07:36
  • 558

二分查找求上下界的两种不同算法

在学习LIS的O(nlogn)的算法时看到了二分法求下界的概念,所以回白书学习了一下在有序表中查找元素时经常用到二分法,普通的二分查找很简单,就是不断改变区间。二分查找只适用于有序数列,时间复杂度为O...
  • SeasonJoe
  • SeasonJoe
  • 2015-11-22 10:40
  • 1066

二分查找求上下界

/* * Note: * 二分法也是分治思想的一种体现 * 分治三步:1.划分问题 2.递归求解 3.合并问题 * 虽然递归能够实现二分,但一...
  • qq_33266889
  • qq_33266889
  • 2016-12-14 22:11
  • 271
    个人资料
    • 访问:920830次
    • 积分:12485
    • 等级:
    • 排名:第1322名
    • 原创:429篇
    • 转载:4篇
    • 译文:0篇
    • 评论:154条
    联系方式
    博客专栏
    最新评论