分治法——棋盘覆盖问题

原创 2016年05月30日 21:59:58

分治法——棋盘覆盖问题

棋盘覆盖问题。有一个2k2k的方格棋盘,恰有一个方格是黑色的,其他为白色。你的任务是用包含3个方格的L型牌覆盖所有白色方格。黑色方格不能被覆盖,且任意一个白色方格不能同时被两个或更多牌覆盖。如图所示为L型牌的4种旋转方式。
L型牌

分治三步骤
划分问题:将2k2k的棋盘划分为2k12k1这样的子棋盘4块。
递归求解:递归填充各个格子,填充分为四个情况,在下面会有解释,递归出口为k=0也就是子棋盘方格数为1。
合并问题:不需要合并子问题。
递归填充的四种情况
如果黑方块在左上子棋盘,则递归填充左上子棋盘;否则填充左上子棋盘的右下角,将右下角看做黑色方块,然后递归填充左上子棋盘。
如果黑方块在右上子棋盘,则递归填充右上子棋盘;否则填充右上子棋盘的左下角,将左下角看做黑色方块,然后递归填充右上子棋盘。
如果黑方块在左下子棋盘,则递归填充左下子棋盘;否则填充左下子棋盘的右上角,将右上角看做黑色方块,然后递归填充左下子棋盘。
如果黑方块在右下子棋盘,则递归填充右下子棋盘;否则填充右下子棋盘的右下角,将左上角看做黑色方块,然后递归填充右下子棋盘。

棋盘覆盖问题的递归解法

棋盘覆盖问题分治算法

void chessBoard(int row, int column, int x, int y, int siz) {
    // 递归出口
    if(siz == 1) {
        return;
    }

    // 对半划分成2^(siz - 1) * 2^(siz - 1)的棋盘
    int s = siz / 2;
    // L型牌编号自增
    int t = ++number;
    // 中间点,以此判别(x,y)在哪个子棋盘中
    int centerRow = row + s;
    int centerColumn = column + s;
    // 黑色方格在左上子棋盘
    if(x < centerRow && y < centerColumn) {
        chessBoard(row, column, x, y, s);
    } else {
        // 不在则填充左上子棋盘的右下角
        chess[centerRow - 1][centerColumn - 1] = t;
        // 然后覆盖其他格子,注意这时(x,y)要看做已填充位置
        chessBoard(row, column, centerRow - 1, centerColumn - 1, s);
    }

    // 黑色方格在右上子棋盘
    if(x < centerRow && y >= centerColumn) {
        chessBoard(row, centerColumn, x, y, s);
    } else {
        // 不在则填充右上子棋盘的左下角
        chess[centerRow - 1][centerColumn] = t;
        // 然后覆盖其他格子,注意这时(x,y)要看做已填充位置
        chessBoard(row, centerColumn, centerRow - 1, centerColumn, s);
    }

    // 黑色方格在左下子棋盘
    if(x >= centerRow && y < centerColumn) {
        chessBoard(centerRow, column, x, y, s);
    } else {
        // 不在则填充左下子棋盘的右上角
        chess[centerRow][centerColumn - 1] = t;
        // 然后覆盖其他格子,注意这时(x,y)要看做已填充位置
        chessBoard(centerRow, column, centerRow, centerColumn - 1, s);
    }

    // 黑色方格在右下子棋盘
    if(x >= centerRow && y >= centerColumn) {
        chessBoard(centerRow, centerColumn, x, y, s);
    } else {
        // 不在则填充右下子棋盘的左上角
        chess[centerRow][centerColumn] = t;
        // 然后覆盖其他格子,注意这时(x,y)要看做已填充位置
        chessBoard(centerRow, centerColumn, centerRow, centerColumn, s);
    }

}

测试主程序

#include <iostream>

using namespace std;

const int maxNum = 1 << 10;
// 棋盘
int chess[maxNum][maxNum];
// L型牌编号
int number;

void chessBoard(int row, int column, int x, int y, int siz) {
    // 递归出口
    if(siz == 1) {
        return;
    }

    // 对半划分成2^(siz - 1) * 2^(siz - 1)的棋盘
    int s = siz / 2;
    // L型牌编号自增
    int t = ++number;
    // 中间点,以此判别(x,y)在哪个子棋盘中
    int centerRow = row + s;
    int centerColumn = column + s;
    // 黑色方格在左上子棋盘
    if(x < centerRow && y < centerColumn) {
        chessBoard(row, column, x, y, s);
    } else {
        // 不在则填充左上子棋盘的右下角
        chess[centerRow - 1][centerColumn - 1] = t;
        // 然后覆盖其他格子,注意这时(x,y)要看做已填充位置
        chessBoard(row, column, centerRow - 1, centerColumn - 1, s);
    }

    // 黑色方格在右上子棋盘
    if(x < centerRow && y >= centerColumn) {
        chessBoard(row, centerColumn, x, y, s);
    } else {
        // 不在则填充右上子棋盘的左下角
        chess[centerRow - 1][centerColumn] = t;
        // 然后覆盖其他格子,注意这时(x,y)要看做已填充位置
        chessBoard(row, centerColumn, centerRow - 1, centerColumn, s);
    }

    // 黑色方格在左下子棋盘
    if(x >= centerRow && y < centerColumn) {
        chessBoard(centerRow, column, x, y, s);
    } else {
        // 不在则填充左下子棋盘的右上角
        chess[centerRow][centerColumn - 1] = t;
        // 然后覆盖其他格子,注意这时(x,y)要看做已填充位置
        chessBoard(centerRow, column, centerRow, centerColumn - 1, s);
    }

    // 黑色方格在右下子棋盘
    if(x >= centerRow && y >= centerColumn) {
        chessBoard(centerRow, centerColumn, x, y, s);
    } else {
        // 不在则填充右下子棋盘的左上角
        chess[centerRow][centerColumn] = t;
        // 然后覆盖其他格子,注意这时(x,y)要看做已填充位置
        chessBoard(centerRow, centerColumn, centerRow, centerColumn, s);
    }

}

int main() {
    // 大小,黑色方格位置
    int siz, x, y;
    while(true) {
        cout << "(x,y)从(0,0)开始,输入数据为0 0 0即结束程序。" << endl;
        cout << "请输入棋盘大小和黑色方格位置(x,y):";
        cin >> siz >> x >> y;
        // 退出条件
        if(siz == 0) {
            break;
        }
        // 涂黑(x,y),初始化L型牌编号
        chess[x][y] = number = 1;

        // 分治法填满棋盘
        chessBoard(0, 0, x, y, siz);

        // 输出该棋盘
        for(int i = 0; i < siz; i++) {
            for(int j = 0; j < siz; j++) {
                cout << chess[i][j] << "\t";
            }
            cout << endl << endl << endl;
        }
    }

    return 0;
}

输出数据

(x,y)从(0,0)开始,输入数据为0 0 0即结束程序。
请输入棋盘大小和黑色方格位置(x,y):2 0 0
1       2


2       2


(x,y)从(0,0)开始,输入数据为0 0 0即结束程序。
请输入棋盘大小和黑色方格位置(x,y):4 1 1
3       3       4       4


3       1       2       4


5       2       2       6


5       5       6       6


(x,y)从(0,0)开始,输入数据为0 0 0即结束程序。
请输入棋盘大小和黑色方格位置(x,y):8 2 2
4       4       5       5       9       9       10      10


4       3       3       5       9       8       8       10


6       3       1       7       11      11      8       12


6       6       7       7       2       11      12      12


14      14      15      2       2       19      20      20


14      13      15      15      19      19      18      20


16      13      13      17      21      18      18      22


16      16      17      17      21      21      22      22



(x,y)从(0,0)开始,输入数据为0 0 0即结束程序。
请输入棋盘大小和黑色方格位置(x,y):0 0 0

Process returned 0 (0x0)   execution time : 29.988 s
Press any key to continue.
版权声明:如需转载,请联系本人获取许可且必须注明出处,详见联系方式。 举报

相关文章推荐

棋盘覆盖问题的递归解决

搭建博客第一次就写一下,自己在github上利用github page这个功能搭建博客的过程也算是一个教程吧。第一次写有什么不对的地方请大家指正啦。准备工作首先想要使用github page搭建一个博...

0006算法笔记——【分治法】线性时间选择

线性时间选择问题:给定线性序集中n个元素和一个整数k,1≤k≤n,要求找出这n个元素中第k小的元素,(这里给定的线性集是无序的)。        1、随机划分线性选择        线性时间选择随机划...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

夜深人静写算法(2):动态规划

目录     一、动态规划初探       1、递推       2、记忆化搜索       3、状态和状态转移       4、最优化原...
  • acm_JL
  • acm_JL
  • 2016-04-01 02:02
  • 1260

教你让Ubuntu中文程序远离乱码

解决Ubuntu中文乱码问题

棋盘问题(分治)

[cpp] view plain copy  //棋盘覆盖问题   /*  (tr,tc)是棋盘左上角的方格坐标  (dr,dc)是特殊方格所在的坐标  size是棋盘的行数和列数   ...

棋盘覆盖问题

//棋盘覆盖问题 /* (tr,tc)是棋盘左上角的方格坐标 (dr,dc)是特殊方格所在的坐标 size是棋盘的行数和列数 */ #include using namespace std; in...
  • acm_JL
  • acm_JL
  • 2016-03-20 20:34
  • 2694

0004算法笔记——【分治法】合并排序

合并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。合并排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序...

0005算法笔记——【分治法】快速排序

1、未优化的快速排序        快速排序的基本思想是通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序...

string和stringstream+setw()用法总结

一、string string 是 C++ 提供的字串型態,和 C 的字串相比,除了有不限长度的优点外,还有其他许多方便的功能。要使用 string, 必須先加入这一行: #include 接...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)