线性筛选法求素数表


1.先介绍普通的算法,比较简单,直接贴代码

#include <iostream>  
  using namespace std;  
   
  const int MAX=100;  
  bool isPrime[MAX+1];  
  int total;//计数  
  int prime[MAX+1]; 
void makePrime1()
{
    memset(isPrime, 1, sizeof(isPrime));
    isPrime[0]=false;
    isPrime[1]=false;
    for (int i=2;  i<=MAX;  i++)
        if (isPrime[i]) {
            prime[total++]=i;
            for (int k=i*i; k<=MAX; k+=i)
                 isPrime[k]=false;
        }
} 

2.线性筛选法

1)原理:
      i. 任何一个合数都可以表示成一个质数和一个数的乘积
     ii. 假设A是一个合数,且A = x * y,这里x也是一个合数,那么有:
        A = x * y; (假设y质数,x合数)
        x = a * b; (假设a是质数,且a < x)
         =》 A = a * b * y = a * Z (Z = b * y)
即一个合数(x)与一个质数(y)的乘积可以表示成一个更大的合数(Z)与一个更小的质数(a)的乘积
    
2)代码:

 void makePrime2()  
 {  
     memset(isPrime,true,sizeof(isPrime));  
     memset(prime,0,sizeof(prime));  
     for(int i=2;i<=MAX;i++)  
     {  
         if(isPrime[i]) prime[total++]=i; 
         for(int j=0; j<total && i*prime[j]<=MAX; j++)  
         {  
             isPrime[i*prime[j]]=false;  
              if(i%prime[j]==0) break; 
         }  
     }  
 }  

算法中的一个难点是:if(i%prime[j]==0) break;下面做下解释:
先举个例: 4*3=12=6*2;如果没有上面那行代码,则在i=4时,isPrime[12]=false;
在i=6时,isPrime[12]=false;这个句子会执行两次,从而导致重复执行降低了效率。使用上面那行代码进行判断后则可以避免。
注意一个合数和一个质数的乘积可用一个更大的合数和一个更小的质数的乘积表示,如 12=4×3=2×2×3=6×2;4%2=0就表示可以用更大的合数表示4×3,此处退出就可避免重复赋值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值