图论(一):DFS,BFS,邻接链表,并查集

原创 2016年05月31日 20:43:44

本文总结了图的深度优先搜索,图的广度优先搜索,邻接链表和邻接矩阵的实现,并查集的实现。

0),预备知识
       
基础词汇:有向图,无向图,带权有向图,带权无向图,有向图中<Vi, Vj>:即Vi--->Vj,弧尾--->弧头,无向图中相邻记为(Vi, Vj),顶点有穷集合V+边的有穷集合E。
        图的两种实现方式:1,邻接矩阵:edge[n][n]表示有n个结点,数组内容为权值大小或者是否存在边(∞表示无边,权值或1表示有边,0表示结点到结点本身);
                                2,邻接链表:针对稀疏矩阵较适宜,为图的每个顶点都建立一个单链表,第i个单链表中保存与结点Vi所有相邻结点信息(无向图)或弧尾结点信息(有向图),以及边信息。


1),图的深度优先搜索(DFS)
        深度优先算法的主要思想是:首先以一个未被访问过的顶点作为起始顶点,沿当前顶点的边走到未访问过的顶点;当没有未访问过的顶点时,则回到上一个顶点,继续试探访问别的顶点,直到所有的顶点都被访问过。显然,深度优先遍历是沿着图的某一条分支遍历直到末端,然后回溯,再沿着另一条进行同样的遍历。
        例1:以下图为例,从结点1开始DFS,程序的算法思想是:在主函数中初始化连接矩阵,调用dfs(1) ---> 设置变量cnt,将cnt等于结点个数作为dfs递归的临界条件 ---> 设置标志mark[n],当当前访问结点的边指向的下一结点未被访问时,进行dfs调度访问(结点的相邻结点的访问顺序为标号由小到大的顺序)


/***先输入n个结点,m条边,之后输入无向图的m条边,之后对上图输出DFS遍历的结点顺序***/
#include <iostream>
#include <iomanip>
#define nmax 110
#define inf 999999999
using namespace std;
int n, m, cnt, edge[nmax][nmax], mark[nmax];//结点数,边数,计数值,邻接矩阵,结点访问标记
void dfs(int cur){
	cnt++;
	/***operation***/
	if(cnt == 1)
		cout << cur;
	else 
		cout << setw(3) << cur;
	/***operation***/
	if(cnt == n) return;
	else{
		int i;
		for(i = 1; i <= n; i++){
			if(edge[cur][i] == 1 && mark[i] == 0){
				mark[i] = 1;
				dfs(i);
			}
		}
		return;
	}

}

int main(){
	while(cin >> n >> m && n != 0){
		//初始化邻接矩阵
		int i, j;
		for(i = 1; i <= n; i++){
			for(j = 1; j <= n; j++){
				edge[i][j] = inf;
			}
			edge[i][i] = 0;
		}
		int a, b;
		while(m--){
			cin >> a >> b;
			edge[a][b] = edge[b][a] = 1;
		}
		//以dnf(1)为起点开始递归遍历
		memset(mark, 0, sizeof(mark));
		cnt = 0;
		mark[1] = 1;
		dfs(1);
		cout << endl;
	}
	return 0;
}
        程序运行结果:

        例2:下面是城市的地图,注意是单向图,求城市1到城市5的最短距离
        程序思路:从1号城市出发,可到达2号城市和5号城市,若按照1到n的顺序则先访问2号城市;访问完2号城市后,由于2号城市可到达的城市有3号和5号城市,我们访问3号城市;此后,3号城市可到达1号,4号城市,由于1号城市已被访问过,我们访问4号城市;4号城市又可到达5号城市,我们最后访问5号城市。但是,1->2->3->4->5并不一定是最短路径,我们需要撤除5号城市的访问标记,返回到4号城市,由于经由4号城市已访问过5号城市而又没有其他城市可访问;再返回到3号城市,经由3号城市访问过4号城市,则看看能否访问5号城市,不能则再返回到2号城市,这时2号城市有路径直达5号城市,即1->2->5.....如此折回再前进,直至找到所有1号城市能到达5号城市的路径,取其中的最小值。


/***先输入n个结点,m条边,之后输入有向图的m条边,边的前两元素表示起始结点,第三个值表权值,输出1号城市到n号城市的最短距离***/
/***算法的思路是访问所有的深度遍历路径,需要在深度遍历返回时将访问标志置0***/
#include <iostream>
#include <iomanip>
#define nmax 110
#define inf 999999999
using namespace std;
int n, m, minPath, edge[nmax][nmax], mark[nmax];//结点数,边数,最小路径,邻接矩阵,结点访问标记
void dfs(int cur, int dst){
	/***operation***/

	/***operation***/
	if(minPath < dst) return;//当前走过路径大于之前最短路径,没必要再走下去
	if(cur == n){//临界条件
		if(minPath > dst) minPath = dst;
		return;
	}
	else{
		int i;
		for(i = 1; i <= n; i++){
			if(edge[cur][i] != inf && edge[cur][i] != 0 && mark[i] == 0){
				mark[i] = 1;
				dfs(i, dst+edge[cur][i]);
				mark[i] = 0;			
			}
		}
		return;
	}
}

int main(){
	while(cin >> n >> m && n != 0){
		//初始化邻接矩阵
		int i, j;
		for(i = 1; i <= n; i++){
			for(j = 1; j <= n; j++){
				edge[i][j] = inf;
			}
			edge[i][i] = 0;
		}
		int a, b;
		while(m--){
			cin >> a >> b;
			cin >> edge[a][b];
		}
		//以dnf(1)为起点开始递归遍历
		memset(mark, 0, sizeof(mark));
		minPath = inf;
		mark[1] = 1;
		dfs(1, 0);
		cout << minPath << endl;
	}
	return 0;
}

        程序运行结果如下:



2),图的广度优先搜索(BFS)
          广度优先遍历的主要思想是:首先以一个未被访问过的顶点作为起始顶点,访问其所有相邻的顶点,然后对每个相邻的顶点,再访问它们相邻的未被访问过的顶点,直到所有顶点都被访问过,遍历结束。

        例1:根据1)例1中的无向图,输出其广度优先搜索顺序。
        程序主要思想:结点1入队 ---> while根据队列非空进行循环 ---> 出队并将相邻结点入队,此外需要设置计数值cnt,每次出队时加1。

/***先输入n个结点,m条边,之后输入无向图的m条边,边的两元素表示起始结点***/
#include <iostream>
#include <queue>
#include <iomanip>
using namespace std;
#define nmax 110
#define inf 999999999
queue<int> que;
int n, m, mark[nmax], edge[nmax][nmax], cnt;
int main(){
	while(cin >> n >> m && n != 0){
		int i, j;
		//初始化邻接链表
		for(i = 1; i <= n; i++){
			for(j = 1; j <= n; j++){
				edge[i][j] = inf;
			}
			edge[i][i] = 0;
		}
		int a, b;
		while(m--){
			cin >> a >> b;
			edge[a][b] = edge[b][a] = 1;
		}
		while(!que.empty()) que.pop();
		memset(mark, 0, sizeof(mark));
		//开始广度优先遍历
		int head;
		cnt = 0;
		mark[1] = 1;
		que.push(1);
		while(!que.empty()){
			head = que.front();
			que.pop();
			/***operation***/
			cnt++;
			if(cnt == 1)
				cout << head;
			else
				cout << setw(3) << head;
			/***operation***/
			for(i = 1; i <= n; i++){
				if(edge[head][i] == 1 && mark[i] == 0){
					mark[i] = 1;
					que.push(i);
				}
			}
		}
		cout << endl;
		if(cnt != n) cout << "The original image is not connected.\n";
	}
	return 0;
}
        程序运行结果如下:



        例2:如下图,需要坐飞机从1号城市到5号城市,求最小的转机次数


/***先输入n个结点,m条边,出发城市,终点城市,之后输入无向图的m条边,边的两元素表示起始结点***/
/***需要构建结点结构体Node,存放结点编号和遍历层数,每次for循环时该层数在上一层基础上加1***/
#include <iostream>
#include <queue>
using namespace std;
#define nmax 110
#define inf 999999999
struct Node{
	int node;
	int cnt;
};
queue<Node> que;
int m, n,  edge[nmax][nmax], mark[nmax], startNum, endNum;
int main(){
	while(cin >> n >> m >> startNum >> endNum && n != 0){
		bool tag = false;
		//初始化邻接矩阵
		int i, j;
		for(i = 1; i <= n; i++){
			for(j = 1; j <= n; j++){
				edge[i][j] = inf;
			}
			edge[i][i] = 0;
		}
		while(m--){
			cin >> i >> j;
			edge[i][j] = edge[j][i] = 1;
		}
		//开始广度优先遍历
		memset(mark, 0, sizeof(mark));
		while(!que.empty()) que.pop();
		Node tmp;
		tmp.node = startNum;
		tmp.cnt = 0;
		que.push(tmp);
		mark[tmp.node] = 1;
		while(!que.empty()){
			Node head = que.front();
			que.pop();
			Node temp;
			for(i = 1; i <= n; i++){
				if(edge[head.node][i] == 1 && mark[i] == 0){					
					temp.node = i;
					temp.cnt = head.cnt + 1;
					que.push(temp);//注意写在if语句里面
					mark[temp.node] = 1;
					if(temp.node == endNum){
						tag = true;
						cout << temp.cnt << endl;
						break;
					}
				}

			}
			if(tag)
				break;
		}
	}
	return 0;
}
        程序运行结果如下:




3),邻接链表和邻接矩阵的实现
       
邻接表由表头结点(结点信息)和表结点(边信息)两部分组成,其中图中每个顶点均对应一个存储在数组中的表头结点。以下为带权有向图:

        例1:邻接链表中每个顶点均对应一个存储在数组中的表头结点,为简化,每个邻接结点结构体只包含下一相邻结点编号和边权,使用标准模板vector编程实现。此外也可由邻接矩阵实现,上图实现如下:

/*****了解边信息结构体和邻接链表的实现,并在实现好基础上增加删除一些边,之后再用邻接矩阵实现,学习erase,push_back,setw的用法*****/
#include <iostream>
#include <iomanip>
#include <vector>
#define inf -1//设置无穷大为-1,表示无边
using namespace std;
int n;
//边信息,包含连接结点编号和边的权重
struct Edge{
	int adjNodeNum;
	int edgeWeight;
};
struct Node{//结点信息
	int nodeNum;
	char data;
}node[110];
vector<Edge> adjList[110]; //邻接链表,该图最多有110个结点
int adjMatrix[110][110];//邻接矩阵

void initAdjList(){
	int i;
	for(i = 0; i < n; i++) adjList[i].clear();//清空--->构建--->具体操作
	Edge tmp0[2], tmp1[2], tmp2, tmp3[3];
	tmp0[0].adjNodeNum = 1; tmp0[0].edgeWeight = 1;
	tmp0[1].adjNodeNum = 2; tmp0[1].edgeWeight = 4;
	node[0].data = 'A'; node[0].nodeNum = 0;
	adjList[0].push_back(tmp0[0]); adjList[0].push_back(tmp0[1]);
	tmp1[0].adjNodeNum = 2; tmp1[0].edgeWeight = 2;
	tmp1[1].adjNodeNum = 3; tmp1[1].edgeWeight = 9;
	node[1].data = 'B'; node[1].nodeNum = 1;
	adjList[1].push_back(tmp1[0]); adjList[1].push_back(tmp1[1]);
	tmp2.adjNodeNum = 3; tmp2.edgeWeight = 6;
	node[2].data = 'D'; node[2].nodeNum = 2;
	adjList[2].push_back(tmp2);
	tmp3[0].adjNodeNum = 0; tmp3[0].edgeWeight = 3;
	tmp3[1].adjNodeNum = 1; tmp3[1].edgeWeight = 5;
	tmp3[2].adjNodeNum = 2; tmp3[2].edgeWeight = 8;
	adjList[3].push_back(tmp3[0]); adjList[3].push_back(tmp3[1]); adjList[3].push_back(tmp3[2]);
	node[3].data = 'C'; node[3].nodeNum = 3;
}
void output(){
	int i, j;
	for(i = 0; i < n; i++){
		cout << node[i].nodeNum << setw(2) << node[i].data;
		for(j = 0; j < adjList[i].size(); j++){
			cout << setw(6) << adjList[i][j].adjNodeNum << setw(2) << adjList[i][j].edgeWeight;
		}
		cout << setw(9) << "NULL" << endl;
	}
}
void makeChange(){
	cout << "make some changes......:\n";
	Edge temp;
	temp.adjNodeNum = 3; temp.edgeWeight = 5;
	adjList[0].push_back(temp);//邻接表0中增加一个元素
	adjList[3].erase(adjList[3].begin()+1, adjList[3].begin()+3);//邻接表3中删除两个元素
}
void initMatrix(){
	int i, j;
	for(i = 0; i < n; i++){
		for(j = 0; j < n; j++){
			adjMatrix[i][j] = inf;
		}
		adjMatrix[i][i] = 0;
	}
	adjMatrix[0][1] = 1; adjMatrix[0][2] = 4; adjMatrix[1][2] = 2;
	adjMatrix[1][3] = 9; adjMatrix[2][3] = 6; adjMatrix[3][0] = 3;
	adjMatrix[3][1] = 5; adjMatrix[3][2] = 8;
}
void output1(){
	int i, j;
	cout << "output the adjacency matrix:\n";
	for(i = 0; i < n; i++){
		for(j = 0; j < n; j++){
			if(j == 0) cout << adjMatrix[i][j];
			else cout << setw(3) << adjMatrix[i][j];
		}
		cout << endl;
	}
}
int main(){
	n = 4;
	initAdjList();
	output();
	makeChange();
	output();
	initMatrix();
	output1();
	return 0;
}

        程序运行结果如下:



4),并查集的实现
       
并查集:用一棵树上的结点来表示在一个集合中的数字,如以下{1,2,3,4}和{5,6},再用每个结点中的内容表示其双亲结点,如Tree[N],则Tree[1] = -1, Tree[2] = 1, Tree[6] = 5......
如果想要合并这两棵树棵树,则可令Tree[5] = -1变为Tree[5] = 1。如下:

        对于,以下一种特殊情况,需要在查找树的根节点时,加以一定的约束与优化,将遍历过的元素的双亲结点设为根节点,如下:



        例1:并查集的实现

/****实现并查集的数组组成,找根节点,合并两个集合,压缩路径************************/
#include <iostream>
#include <iomanip>
using namespace std;

int Set[110];
int Tree[110];
//使用查找函数来寻找x所在树的根节点
int findRoot(int x){
	if(Tree[x] == -1) return x;
	else
		return findRoot(Tree[x]);
}
//使用压缩路径的查找函数来查找x所在树的根节点,只压缩x到root所查找的路径
int findRoot1(int x){
	if(Tree[x] == -1) return x;
	else{
		int tmp = findRoot1(Tree[x]);
		Tree[x] = tmp;
		return tmp;//层层返回
	}
}
//使用非递归方式
int findRoot_(int x){
	while(Tree[x] != -1) x = Tree[x];
	return x;
}
int findRoot_1(int x){
	int tmp = x;
	while(Tree[x] != -1) x = Tree[x];
	while(Tree[tmp] != -1) {tmp = Tree[tmp]; Tree[tmp] = x;}//tmp先保存父节点方便while循环,再对数组内容做改变
	return x;
}
int main(){
	int n1, n2;//集合1,2的元素个数
	cout << "Please input the number of set1 and the number of set2:\n";
	while(cin >> n1 >> n2){
		int i = 0, j;
		//输入集合1和2的数组表,第一行代表元素,第二行代表元素的双亲结点
		cout << "Please input set1(first line is  node, second line is its father node):\n"; 
		for(i = 0; i < n1; i++) cin >> Set[i];
		for(i = 0; i < n1; i++) cin >> Tree[Set[i]];
		cout << "Please input set2(first line is  node, second line is its father node):\n";
		for(i = n1 ; i < n1 + n2; i++) cin >> Set[i];
		for(i = n1 ; i < n1 + n2; i++) cin >> Tree[Set[i]];
		//输入集合1和集合2中的一个元素,找出各自的根节点
		cout << "Please input two nodes of the two sets (and output its root node):\n";
		int sub1, sub2;
		cin >> sub1 >> sub2;
		cout << "It's root node is: " << findRoot(sub1) << "   " << findRoot(sub2) << endl;
		//合并集合1和集合2,并显示
		cout << "Merge two trees:\n";
		Tree[findRoot1(sub2)] = findRoot1(sub1);
		for(i = 0; i < n1 + n2; i++) cout << setw(2) <<Set[i];
		cout << endl;
		for(i = 0; i < n1 + n2; i++) cout << setw(2) << Tree[Set[i]];
		cout << endl;
		cout << "Please input the number of set1 and the number of set2:\n";
	}
}

        程序运行结果如下:

        例2:畅通工程

/****输入城镇数n和道路数m,再输入每条道路连通的城镇(城镇从1开始编号),看至少需再修几条路使全部城镇连通;若输入n且n=0结束输入***********/
/****初始化n个并查集,此后每输入一条道路,就将关联的两个城镇加入同一并查集,最后由独立的并查集个数-1即为所求答案*********************/
#include <iostream>
using namespace std;
int Tree[1100];
int findRoot(int x){
	if(Tree[x] == -1) return x;
	else{
		int tmp = findRoot(Tree[x]);
		Tree[x] = tmp;
		return tmp;
	}
}

int main(){
	int n, m;
	while(cin >> n && n!= 0){
		cin >> m;
		int i;		
		for(i = 1; i <= n; i++)//初始化n个并查集
			Tree[i] = -1;		
		int a, b;
		for(i = m; i >= 1; i--){//处理m条道路,合并并查集
			cin >> a >> b;
			a = findRoot(a);
			b = findRoot(b);
			if(a != b) Tree[b] = a; //此处必须先进行比较,如果a,b相同,则会使根节点不为-1,导致并查集总数变少
		}		
		int count = 0;
		for(i = 1; i <= n; i++)//计算剩余独立的并查集
			if(Tree[i] == -1) ++count;
		cout << "Need to build the number of roads is: " << count - 1 << endl;
	}
}

        程序运行结果如下:

        例3:More Is Better

/***有1000 0000个小朋友,随机选择朋友关系,每次选中两个人,且朋友关系具有传递性,当选择m次后,输出最大朋友关系人数或1**********************/
/***思路与畅通工程类似,初始化并查集,对每次选择进行并查集合并,由于需要计算最大并查集元素个数,需要初始化每个sum[i]=1,每次合并都进行累加即可**/
/***先输入关系次数m,再依次输入这m组关系****/
#include <iostream>
using namespace std;
#define num 10000001
int Tree[num];
int Sum[num];
int findRoot(int x){
	if(Tree[x] == -1) return x;
	else{
		int tmp = findRoot(Tree[x]);
		Tree[x] = tmp;
		return tmp;
	}
}

int main(){
	int m;
	while(cin >> m && m != 0){
		int i;
		for(i = 1; i < num; i++) {Tree[i] = -1; Sum[i] = 1;}
		int a, b;
		while(m--){
			cin >> a >> b;
			a = findRoot(a);
			b = findRoot(b);
			if(a != b) {Tree[b] = a; Sum[a] += Sum[b];}
		}
		int max = 1;
		for(i = 1; i < num; i++)
			if(Sum[i] > max) max = Sum[i];
		cout << "Maximum number of friends is: " << max << endl;
	}
	return 0;
}

        程序运行结果如下:



版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

图论(二):图的四种最短路径算法

本文总结了图的几种最短路径算法的实现:深度或广度优先搜索算法,弗洛伊德算法,迪杰斯特拉算法,Bellman-Ford算法 1),深度或广度优先搜索算法(解决单源最短路径) 从起始结点开始访...

图的遍历(上)——邻接矩阵表示

概述图作为数据结构书中较为复杂的数据结构,对于图的存储方式分邻接矩阵和邻接表两种方式。在这篇博客中,主要讲述邻接矩阵下的图的深度优先遍历(DFS)与广度优先遍历(BFS)。广度优先遍历(BFS)BFS...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

hihoCoder 1224 赛车 (dfs,邻接链表存边)

#1224 : 赛车 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 幻想乡有一个赛车场。赛车场里有N个地点。同时地点之间还有单向的道路存在。 这些道...

图论(一):DFS,BFS,邻接链表,并查集

本文总结了图的深度优先搜索,图的广度优先搜索,邻接链表和邻接矩阵的实现,并查集的实现。 0),预备知识         基础词汇:有向图,无向图,带权有向图,带权无向图,有向图中:即Vi--->Vj,...

[BZOJ 1015][JSOI2008]星球大战starwar

Description 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系。某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球。这些星...

图的遍历:BFS和DFS

图的遍历是指从图中的某一顶点出发,按照某种搜索方法沿着图中的边对图中的所有顶点进行访问且仅访问一次。图的遍历是图的一种最基本的操作,其他许多操作都是建立在图的遍历操作基础之上。         图的遍...

图的邻接矩阵表示(DFS,BFS)

头文件"Graph.h" #include #include #define UNVISITED 0 #define VISITED 1 #define INEXIST 0 #define EXIS...

图邻接表存储 深度优先和广度优先遍历

邻接表    是图的常用储存结构之一。邻接表由表头结点和表结点两部分组成,其中图中每个顶点均对应一个存储在数组中的表头结点。如图: 下面直接上代码:#include #include #incl...

poj 1733 Parity game 并查集 离散化

点击打开链接题目链接 Parity game Time Limit: 1000MS   Memory Limit: 65536K Total Submissi...

ZOJ 3811 Untrusted Patrol 并查集+邻接表,注意所有点都要走过

n个点,m条边,k个点有报警器,每个报警器经过后报警一次就不能再使用。 L次报警,接下来L个数字是一次次的报警顺序 保安每经过一个报警器,报警器就报一次警; 判断保安在这种报警顺序下,有没有可能已经把...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)