关闭

【编程之美2.7】求最大公约数的最优算法

496人阅读 评论(1) 收藏 举报
分类:
public class euclid {

	public static void main(String[] args) {
			int m = 0, n = 0;
			int temp = 0;
			Scanner scanner = new Scanner(System.in);
			m = scanner.nextInt();
			n = scanner.nextInt();
			scanner.close();
			if (m < n)
			{
				temp = n;
				n = m;
				m = temp;
			}
			
			//euclid
			while (m % n != 0)
			{
				int r = m % n;
				m = n;
				n = r;
			}
			System.out.println(n);
	}

}

 算法的主要思想:令m = max, n = min;

 1. 如果 m % n == 0,那么n便是最大公约数;

 2. 如果1不成立, 那么令 r = m % n,m = n, n = r,重复1的操作;

 之前在求两个数的最大公约数一直用的比较笨拙的方法,既费时又费力。


2014-5-12 10:49 重新编辑:

上面算法的性能在小数据量的情况下效果不错,但是如果给两个很大的数,除法和求余操作是相当耗时的,代价会很大,所以算法需要进一步的优化:

对于两个数x和y,两个数的最大公约数有如下特点:

(1)如果y=k*y1, x=k*x1,那么有f(x, y)=k * f(x1, y1);

(2)如果x = p * x1, 假设p是素数, 且y % p != 0,那么f(x, y) = f(p * x1, y1) = f(x1, y1);

(3)如果k = f(x, y),那么k = f(x-y, y),反之也成立;

因为我们平时计算的时候移位操作的效率要远胜于乘除法,所以取素数p=2,结合上述的性质,我们便能得出以下结果的分类讨论:

1. 如果x和y都是偶数,那么依据性质(1),会有f(x, y) = 2 * f(x/2, y/2);

2. 如果x是偶数,y是奇数,那么依据性质(2),会有f(x, y) = f(2 * x1, y) = f(x >> 1, y);

3. 如果x是奇数,y是偶数,那么依据性质(2),会有f(x, y) = f(x, 2 * y1) = f(x, y >> 1);

4. 如果x和y都是奇数,那么依据性质(3),会有f(x, y) = f(max(x, y) - min(x,y), min(x,y));

因为奇数的差一定是偶数,所以下一步一定会是移位运算,可以避免大规模的相减运算。

按上面的四个步骤我们用移位运算取代了除法运算,避免了除法的大规模开销又避免了大规模的减法运算,性能较好。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:16413次
    • 积分:396
    • 等级:
    • 排名:千里之外
    • 原创:27篇
    • 转载:2篇
    • 译文:0篇
    • 评论:1条