关闭

51NOD 1537 分解(矩阵快速幂)——算法马拉松17(告别奥运)

标签: 矩阵快速幂
584人阅读 评论(0) 收藏 举报
分类:

传送门

(1+2)n 能否分解成 m+(m1)的形式

如果可以 输出 m MOD (109+7) 否则 输出 no

Input

一行,一个数 nn<=1018

Output

一行,如果不存在 m 输出 no,否则输出 m MOD 109+7

Input示例

2

Output示例

9

解题思路:

首先这个题目不存在没有解的情况证明如下:

考虑构造对偶式:

(1+2)n=a+b2(1)

(12)n=ab2(2)

(1) (2)两式相乘得到:

(1)n=a22b2
于是 当n为偶数:有 1=a22b2

ma2m1=a21=2b2

sqrt(m)+sqrt(m1)=a+bsqrt(2)

当n为奇数 同理可得 m=a2+1

现在我们就来看 a 到底是什么了,通过观察和打表找规律,发现一个递推式:

a[n] = 2a[n1]+a[n2]

那么现在我们就可以通过矩阵快速幂来实现了,如果不会矩阵快速幂的同学可以看这篇

博客:传送门

My Code

/**
2016 - 08 - 27 下午
Author: ITAK

Motto:

今日的我要超越昨日的我,明日的我要胜过今日的我,
以创作出更好的代码为目标,不断地超越自己。
**/

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <algorithm>
#include <set>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int INF = 1e9+5;
const int MAXN = 2;
const LL MOD = 1e9+7;
const double eps = 1e-7;
const double PI = acos(-1);
using namespace std;
LL Scan_LL()///输入外挂
{
    LL res=0,ch,flag=0;
    if((ch=getchar())=='-')
        flag=1;
    else if(ch>='0'&&ch<='9')
        res=ch-'0';
    while((ch=getchar())>='0'&&ch<='9')
        res=res*10+ch-'0';
    return flag?-res:res;
}
int Scan_Int()///输入外挂
{
    int res=0,ch,flag=0;
    if((ch=getchar())=='-')
        flag=1;
    else if(ch>='0'&&ch<='9')
        res=ch-'0';
    while((ch=getchar())>='0'&&ch<='9')
        res=res*10+ch-'0';
    return flag?-res:res;
}
void Out(LL a)///输出外挂
{
    if(a>9)
        Out(a/10);
    putchar(a%10+'0');
}
typedef struct
{
    LL mat[MAXN][MAXN];
} Matrix;
LL c;
///求得的矩阵
Matrix p = {2, 1,
            1, 0,
           };
///单位矩阵
Matrix I = {1, 0,
            0, 1,
           };
///矩阵乘法
Matrix Mul_Matrix(Matrix a, Matrix b)
{
    Matrix c;
    for(int i=0; i<MAXN; i++)
    {
        for(int j=0; j<MAXN; j++)
        {
            c.mat[i][j] = 0;
            for(int k=0; k<MAXN; k++)
            {
                c.mat[i][j] += (a.mat[i][k] * b.mat[k][j]) % MOD;
                c.mat[i][j] %= MOD;
            }
        }
    }
    return c;
}
///矩阵的快速幂
Matrix quick_Mod_Matrix(LL m)
{
    Matrix ans = I, b = p;
    while(m)
    {
        if(m & 1)
            ans = Mul_Matrix(ans, b);
        m>>=1;
        b = Mul_Matrix(b, b);
    }
    return ans;
}
///普通的快速幂
LL quick_Mod(LL a, LL b)
{
    LL ans = 1;
    while(b)
    {
        if(b & 1)
            ans = (ans * a) % MOD;
        b>>=1;
        a = (a * a) % MOD;
    }
    return ans;
}
int main()
{
    LL n;
    while(cin>>n)
    {
        if(n == 0)
        {
            puts("1");
            continue;
        }
        if(n == 1)
        {
            puts("2");
            continue;
        }
        if(n == 2)
        {
            puts("9");
            continue;
        }
        Matrix tmp = quick_Mod_Matrix(n-2);
        LL ans = 0;
        ans = 3*tmp.mat[0][0] + tmp.mat[1][0];
        ans %= MOD;
        ans = ans*ans;
        ans = (ans%MOD+MOD)%MOD;
        if(n%2 == 1)
            cout<<(ans+1)%MOD<<endl;
        else
            cout<<ans<<endl;
    }
    return 0;
}
2
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:447521次
    • 积分:10679
    • 等级:
    • 排名:第1610名
    • 原创:633篇
    • 转载:5篇
    • 译文:0篇
    • 评论:89条
    博客专栏