# 51NOD 1537 分解（矩阵快速幂）——算法马拉松17（告别奥运）

516人阅读 评论(0)

(1+2)n$(1+\sqrt 2) ^n$ 能否分解成 m+(m1)$\sqrt m +\sqrt(m-1)$的形式

Input

Output

Input示例

2

Output示例

9

(1+2)n=a+b2(1)$(1+\sqrt 2)^n=a+b*\sqrt2——(1)$

(12)n=ab2(2)$(1-\sqrt2)^n=a-b*\sqrt2——(2)$

(1) (2)$(1)\ (2)$两式相乘得到:

(1)n=a22b2$(-1)^n=a^2-2*b^2$

ma2$若m为a^2$m1=a21=2b2$m-1=a^2-1=2b^2$

sqrt(m)+sqrt(m1)=a+bsqrt(2)$sqrt(m)+sqrt(m-1)=a + b*sqrt(2)$

a[n] = 2a[n1]+a[n2]$a[n]\ = \ 2*a[n-1]+a[n-2]$

My Code$My \ Code：$

/**
2016 - 08 - 27 下午
Author: ITAK

Motto:

**/

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <algorithm>
#include <set>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int INF = 1e9+5;
const int MAXN = 2;
const LL MOD = 1e9+7;
const double eps = 1e-7;
const double PI = acos(-1);
using namespace std;
LL Scan_LL()///输入外挂
{
LL res=0,ch,flag=0;
if((ch=getchar())=='-')
flag=1;
else if(ch>='0'&&ch<='9')
res=ch-'0';
while((ch=getchar())>='0'&&ch<='9')
res=res*10+ch-'0';
return flag?-res:res;
}
int Scan_Int()///输入外挂
{
int res=0,ch,flag=0;
if((ch=getchar())=='-')
flag=1;
else if(ch>='0'&&ch<='9')
res=ch-'0';
while((ch=getchar())>='0'&&ch<='9')
res=res*10+ch-'0';
return flag?-res:res;
}
void Out(LL a)///输出外挂
{
if(a>9)
Out(a/10);
putchar(a%10+'0');
}
typedef struct
{
LL mat[MAXN][MAXN];
} Matrix;
LL c;
///求得的矩阵
Matrix p = {2, 1,
1, 0,
};
///单位矩阵
Matrix I = {1, 0,
0, 1,
};
///矩阵乘法
Matrix Mul_Matrix(Matrix a, Matrix b)
{
Matrix c;
for(int i=0; i<MAXN; i++)
{
for(int j=0; j<MAXN; j++)
{
c.mat[i][j] = 0;
for(int k=0; k<MAXN; k++)
{
c.mat[i][j] += (a.mat[i][k] * b.mat[k][j]) % MOD;
c.mat[i][j] %= MOD;
}
}
}
return c;
}
///矩阵的快速幂
Matrix quick_Mod_Matrix(LL m)
{
Matrix ans = I, b = p;
while(m)
{
if(m & 1)
ans = Mul_Matrix(ans, b);
m>>=1;
b = Mul_Matrix(b, b);
}
return ans;
}
///普通的快速幂
LL quick_Mod(LL a, LL b)
{
LL ans = 1;
while(b)
{
if(b & 1)
ans = (ans * a) % MOD;
b>>=1;
a = (a * a) % MOD;
}
return ans;
}
int main()
{
LL n;
while(cin>>n)
{
if(n == 0)
{
puts("1");
continue;
}
if(n == 1)
{
puts("2");
continue;
}
if(n == 2)
{
puts("9");
continue;
}
Matrix tmp = quick_Mod_Matrix(n-2);
LL ans = 0;
ans = 3*tmp.mat[0][0] + tmp.mat[1][0];
ans %= MOD;
ans = ans*ans;
ans = (ans%MOD+MOD)%MOD;
if(n%2 == 1)
cout<<(ans+1)%MOD<<endl;
else
cout<<ans<<endl;
}
return 0;
}
2
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：414098次
• 积分：10108
• 等级：
• 排名：第1691名
• 原创：615篇
• 转载：5篇
• 译文：0篇
• 评论：87条
博客专栏
 计算机专业的相关课程知识 文章：24篇 阅读：21626
 ACM_组合数学 文章：27篇 阅读：25875
 ITAK的ACM之路 文章：278篇 阅读：271651
阅读排行
喜欢的Music
友情推荐