生成器

转载 2015年11月19日 11:04:01

1.生成器

       通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

>>> g = (x * x for x in range(10))
>>> for n in g:
...     print(n)
... 
0
1
4
9
16
25
36
49
64
81

所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1
    return 'done'

上面的函数可以输出斐波那契数列的前N个数:

>>> fib(6)
1
1
2
3
5
8
'done'

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>

这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

举个简单的例子,定义一个generator,依次返回数字1,3,5:

def odd():
    print('step 1')
    yield 1
    print('step 2')
    yield(3)
    print('step 3')
    yield(5)

调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

>>> o = odd()
>>> next(o)
step 1
1
>>> next(o)
step 2
3
>>> next(o)
step 3
5
>>> next(o)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

>>> for n in fib(6):
...     print(n)
...
1
1
2
3
5
8

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

>>> g = fib(6)
>>> while True:
...     try:
...         x = next(g)
...         print('g:', x)
...     except StopIteration as e:
...         print('Generator return value:', e.value)
...         break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done

关于如何捕获错误,后面的错误处理还会详细讲解。

练习

杨辉三角定义如下:

          1
        1   1
      1   2   1
    1   3   3   1
  1   4   6   4   1
1   5   10  10  5   1

 b = [1]
    while True:
        yield b
        b = [1] + [b[i] + b[i+1] for i in range(len(b)-1)] + [1]

小结

generator是非常强大的工具,在Python中,可以简单地把列表生成式改成generator,也可以通过函数实现复杂逻辑的generator。

要理解generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。

请注意区分普通函数和generator函数,普通函数调用直接返回结果:

>>> r = abs(6)
>>> r
6

generator函数的“调用”实际返回一个generator对象:

>>> g = fib(6)
>>> g
<generator object fib at 0x1022ef948>

python生成器

生成器就是一个函数,python中带yield关键字的函数就是一个生成器。yield语句就是返回一个对象(值),和普通的函数用return返回值不同如果想取得值,那得调用next()函数,如:...
  • sicofield
  • sicofield
  • 2014年10月11日 14:00
  • 2298

iOS设计模式之生成器

iOS设计模式之生成器 1.生成器模式的定义 (1): 将一个复杂的对象的构件与它的表示分离,使得同样的构建过程可以创建不同的表示 (2): 生成器模式除了客户之外还包含一个Director...
  • Judy_luo
  • Judy_luo
  • 2015年07月21日 13:55
  • 855

【Python那些事儿】Python中的生成器

生成器(generator) 生成器,即生成一个容器。 在Python中,一边循环,一边计算的机制,称为生成器。 生成器可以理解为一种数据类型,这种数据类型自动实现了迭代器协议(其他数据类型需要调用自...
  • duxu24
  • duxu24
  • 2016年12月21日 20:08
  • 973

设计模式之生成器模式

将一个复杂对象的创建和它的表示分离,使得同样的创建过程可以有不同的表示。应用场景:一水杯工厂要生产各式各样的水杯,无论杯子是神马造型,但都包括绳子,帽子和杯体。以此模型创建各种类型的杯子。类图 cu...
  • c275046758
  • c275046758
  • 2016年01月19日 10:27
  • 602

生成器对象的send方法

转载
  • baidu_38127162
  • baidu_38127162
  • 2017年05月01日 22:36
  • 297

Python学习总结笔记(7)-- 生成器与协程

在调用普通函数时,程序会中断调用代码运行,切换到调用函数的第一行代码开始执行,到return结束。并且将控制还给调用者,被调用函数状态结束并清空(局部变量等)。如果再次调用该函数,我们需要一切从头重新...
  • kikaylee
  • kikaylee
  • 2016年11月24日 18:50
  • 513

RPG角色生成器

1.功能介绍  几乎所有的RPG游戏(一种源自《龙与地下城》的游戏类型)在进入游戏时都会让用户自己来创建自己喜欢的角色。本次上机要求编写一个简化的创建游戏角色的程序。 (1)游戏角色应有的属性 本题目...
  • x_i_xw
  • x_i_xw
  • 2017年05月03日 18:04
  • 398

提高你的Python: 解释yield’和Generators(生成器)

在开始课程之前,我要求学生们填写一份调查表,这个调查表反映了它们对Python中一些概念的理解情况。一些话题("if/else控制流" 或者 "定义和使用函数")对于大多数学生是没有问题的。但是有一些...
  • cn_wk
  • cn_wk
  • 2016年05月04日 17:59
  • 805

Python之美[从菜鸟到高手]--生成器之全景分析

yield指令,可以暂停一个函数并返回中间结果。使用该指令的函数将保存执行环境,并且在必要时恢复。 生成器比迭代器更加强大也更加复杂,需要花点功夫好好理解贯彻。 看下面一段代码: def gen():...
  • yueguanghaidao
  • yueguanghaidao
  • 2013年08月23日 01:13
  • 15745

Qt编写QUI皮肤生成器

用Qt写项目写多了,为了满足不同客户的需求,需要定制不同样式的界面,QUI皮肤生成器应运而生。思考这个工具的架构花了一年时间,如何从复杂的配色方案中提取出共性,然后将共性转为具体的QSS文件。思考架构...
  • feiyangqingyun
  • feiyangqingyun
  • 2017年02月24日 20:59
  • 1034
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:生成器
举报原因:
原因补充:

(最多只允许输入30个字)