关闭

递推之整数划分问题(2)

361人阅读 评论(0) 收藏 举报
分类:

 

 整数划分问题的递推式dp( i , j )=dp(i-j,j)+dp(i,j-1);       

 
这里没有限制容器数量,所以与上一题的递推式{dp(i,j)=dp(i-1,j-1)+dp(i,j-i)}有所不同。

该递推式的含义由于理解的不同所以因人而已,网上主流的理解方法:
dp( i , j )代表一个数值i它可被划分为一个或多个小于等于j的数的方案数,它的递推式更容易理解,就是存在一个最大数j和不存在最大数j的方案数的总和。。

如 dp(10,2) ,则方案序列中有0~5个2可供选择,故有6种方案。

 

递推的具体实现代码如下:

public static int dp(int i,int j){
        if(i==0||j==1) return 1;
        if(i<j) return dp(i,i);
        else return dp(i-j,j)+dp(i,j-1);       
    }

回溯+剪枝的实现代码如下:

    public static void recur(int m, int t) {      //数m能被划分成最小数是t的序列
        if (m == 0) {

             count++;
        }
        for (int i = t; i <= m; i++) {
            recur(m - i, i);
        }
    }

 

 

 

采用递推的效率要比回溯法略高一些,因为在回溯法中可以按序的思想来采用剪枝的策略,但是效率还是比不上递推,但在回溯法中可以将过程的解存储起来,递推很难实现这一点,下面代码中为了方便采用了链表存储,两方法的效率还是有较大区别的,可以分别输入100进行测试。。

 

 

 


public class IntDiv {

    static ArrayList<Integer> a = new ArrayList();

    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        int p=scan.nextInt();
        recur(p, 1);
        System.out.println("------------------------");
        System.out.println(dp(p,p));
       
    }

    public static void recur(int m, int t) {      //数m能被划分成最小数是t的序列
        if (m == 0) {
            for (int i = 0; i < a.size(); i++) {
                System.out.print(a.get(i) + " ");
            }
            System.out.println();

             return;
        }
        for (int i = t; i <= m; i++) {
            a.add(i);
            recur(m - i, i);
            a.remove(a.size() - 1);
        }
    }
   
    public static int dp(int i,int j){
        if(i==0||j==1) return 1;
        if(i<j) return dp(i,i);
        else return dp(i-j,j)+dp(i,j-1);       
    }
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场