TransG : A Generative Model for Knowledge Graph Embedding ACL 2016.Berlin, Germany.

转载 2016年06月01日 14:22:34

出发点:为了刻画关系的多语义性问题,一个关系应该有多种向量表示,不同的实体对在几何变换中应该采用不同的关系向量。因此,就提出了一种基于贝叶斯非参的无限混合嵌入模型:认为关系向量由若干子成分向量合成,模型会根据实体对自动选择一个关系向量,而多少个这样的关系向量还可以由模型自动选择。

来自:

http://mp.weixin.qq.com/s?__biz=MzI0MDQwMDI3NQ==&mid=2247483667&idx=1&sn=5d51e256ec0c8e8f16205fc68ba43362&scene=23&srcid=0601DJeaykOgoJAOZumFyiGZ#rd

相关文章推荐

Learning Entity and Relation Embeddings for Knowledge Graph Completion

我们这样来训练embeddings,首先把 实体空间 映射到对应的 关系空间,然后在 已经映射的实体间 建立翻译。 实验中,我们通过这样的任务评估模型,link预测,三元组分类,关系事实抽取。知识图...

Learning Entity and Relation Embeddings for Knowledge Graph Completion (TransR)论文翻译

整理转自:fffnull 的 CSDN 博客,感谢他的翻译分享 论文原文地址:Learning Entity and Relation Embeddings for Knowledge Graph ...

#Paper Reading# Online Knowledge-Based Model for Big Data Topic Extraction

论文大体内容: 本文对automatic must-links cannot-links(AMC)[1]模型进行改进,针对stream data进行改进,提出online automatic must...

ACL 2016 | Modeling Coverage for Neural Machine Translation

ACL 2016 | Modeling Coverage for Neural Machine Translation 原创2016-08-03小S程序媛的日常程序媛的日常 今天的 A...

Comparison of Germany and China, the industry 4.0 strategy and approach for China 中德比较以及中国工业4.0策略和手段

If I were asked to describe the keywords - realtime, integration, IoT and IoS of i4.0, it will be: A...

(Embedding graph)嵌入图 搜索引擎 技术

详见文献-Fuzzy multi level graphe mbedding

图像集的分类~Grassmann manifolds+Graph embedding DA (CVPR11)

解读文献:Graph embedding discriminant analysis on Grassmannnian manifolds for improved image set matchin...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:TransG : A Generative Model for Knowledge Graph Embedding ACL 2016.Berlin, Germany.
举报原因:
原因补充:

(最多只允许输入30个字)