linux下apache.tomcat.mysql的整和(1)

原创 2007年10月14日 22:05:00

1.准备,下载需要的文件.这里假定你已经正确安装配置好了JDK.

到Apache官方网站下载所需要的文件: 

httpd-2.2.4.tar.gz

apache-tomcat-6.0.13.tar.gz

tomcat-connectors-1.2.25-src.tar.gz 

MySQL-server-5.0.41-0.i386.rpm

MySQL-client-5.0.41-0.i386.rpm

mysql-connector-java-3.1.14.tar.gz

2.安装Apache

# tar xzvf httpd-2.2.4.tar.gz

# cd httpd-2.2.4

# ./configure --prefix=/usr/local/apache
--with-mpm=worker --enable-module=so
--enable-mods-shared=all
--enable-ssl=shared
--enable-deflate=shared

# make

# make install

安装要很久,可以休息下等会继续以下的工作:)

3.安装Tomcat

# tar xzvf apache-tomcat-6.0.13.tar.gz

# ln -s apache-tomcat-6.0.13 tomcat (此步可省略)

4.编译生成mod_jk

# tar xzvf tomcat-connectors-1.2.25-src.tar.gz

# cd tomcat-connectors-1.2.25-src/native

# ./configure --with-apxs=/usr/local/apache/bin/apxs

# make

# cp ./apache-2.0/mod_jk.so /usr/local/apache/modules/

5.配置

在/usr/local/apache/conf/下面建立两个配置文件mod_jk.conf(或写到APACHE的主配置文件中)和workers.properties.

#vi mod_jk.so

添加以下内容:

# 指出mod_jk模块工作所需要的工作文件workers.properties的位置

JkWorkersFile /usr/local/apache/conf/workers.properties

# Where to put jk logs

JkLogFile /usr/local/apache/logs/mod_jk.log

# Set the jk log level [debug/error/info]

JkLogLevel info

# Select the log format

JkLogStampFormat "[%a %b %d %H:%M:%S %Y]"

# JkOptions indicate to send SSL KEY SIZE,

JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories

# JkRequestLogFormat set the request format

JkRequestLogFormat "%w %V %T"

# 将所有servlet 和jsp请求通过ajp13的协议送给Tomcat,让Tomcat来处理

JkMount /servlet/* worker1

JkMount /*.jsp worker1

# vi workers.properties

添加以下内容:

# Defining a worker named worker1 and of type ajp13

worker.list=worker1

# Set properties for worker1

worker.worker1.type=ajp13

worker.worker1.host=localhost

worker.worker1.port=8009

worker.worker1.lbfactor=50

worker.worker1.cachesize=10

worker.worker1.cache_timeout=600

worker.worker1.socket_keepalive=1

worker.worker1.socket_timeout=300

再配置httpd.conf,作以下修改:

将ServerName 修改为 ServerName LocalHost:80

在DirectoryIndex中添加 index.jsp

我的网页放在/home/wwwroot下,所以要修改DocumentRoot

DocumentRoot "/var/www"

<Directory "/home/wwwroot">

    Options Includes FollowSymLinks

    AllowOverride None

    Order deny,allow

    Allow from all

    XBitHack on

</Directory>

<Directory "/home/wwwroot/WEB-INF">    

    Order deny,allow

    Deny from all

</Directory>

增加关于加载mod_jk的语句:

LoadModule jk_module modules/mod_jk.so

Include /usr/local/apache/conf/mod_jk.conf

最后编辑Tomcat的配置文件server.xml,在HOST段中加入:

<Context path="" docBase="/home/wwwroot" debug="0" reloadable="true" crossContext="true"/>

在/home/wwwroot下建立一个index.jsp,启动Apache和Tomcat,用浏览器访问http://localhost/,应该可以看到正确的页面了

【PHP】进一法取整、四舍五入取整、忽略小数等的取整数方法大全

PHP取整数函数常用的四种方法,下面收集了四个函数;经常用到取整的函数,今天小小的总结一下!其实很简单,就是几个函数而已~~主要是:ceil,floor,round,intval PHP取整...
  • lz0426001
  • lz0426001
  • 2015年01月14日 11:38
  • 5867

求1到N的所有整数中“1”的个数

题意:给定一个十进制的整数N,求出1到N
  • wang11234514
  • wang11234514
  • 2014年06月30日 22:17
  • 1681

正则表达式大全

正则表达式是一种通用的标准,大部分计算机语言都支持正则表达式,包括as3,这里转摘出了一些常用的正则表达式语句,大家用到的时候就不用自己写了 ^\d+$  //匹配非负整数(正整数 + 0) ...
  • sheldon761642718
  • sheldon761642718
  • 2016年08月12日 11:15
  • 441

Go语言用堆排序的方法进行一千万个int随机数排序.

上篇文章用的是quicksort方法排序,但是如果用快速排序法对重复率很高的slice排序的时候,时间复杂度会激增,速度相当慢 所以尝试了一下堆排序,实验结果,感觉挺好的.下面是代码,大家可以参考一...
  • fyxichen
  • fyxichen
  • 2015年06月26日 09:43
  • 1111

你是被别人整还是整别人

很喜欢这幅图,如今早已不是大鱼吃小鱼的时代,而是群鱼吃大鱼的年代。一个人干不过一个团队,一个团队干不过一个系统,一个系统干不过一个趋势。 团队+系统+趋势=成功。一个人可以走得很快,一群人会走得更远!...
  • vatty748895431
  • vatty748895431
  • 2016年04月19日 22:12
  • 462

高斯取整函数与Beatty定理

http://www.blogbus.com/yjq24-logs/42304551.html 高斯取整函数又叫向下取整函数,常见的记法如下: ,既然是向下取整,也就是说[-3.5]=-4,这个...
  • u010900851
  • u010900851
  • 2013年08月29日 20:13
  • 980

上取整和下取整

在数学和计算机科学中,取整函数是一类将实数映射到相近的整数的函数。[1] 常用的取整函数有两个,分别是下取整函数和上取整函数。 下取整函数在数学中一般记作或者,在计算机科学中一般记作flo...
  • dongfengkuayue
  • dongfengkuayue
  • 2014年03月15日 15:55
  • 13138

直方图内最大矩形

问题描述: 有一个直方图,用一个整数数组表示,其中每列的宽度为1,求所给直方图包含的最大矩形面积。比如,对于直方图[2,7,9,4],它所包含的最大矩形的面积为14(即[7,9]包涵的7x2的矩形)...
  • zdavb
  • zdavb
  • 2015年10月07日 22:38
  • 1142

javascript 学习小结 (二)新增小数取整各种方法 by FungLeo

javascript 学习小结 (二) by FungLeo前言前面写过一个学习小结javascript 学习小结 JS装逼技巧(一) by FungLeo 那篇博文总结的东西还是比较多的.但是JS有...
  • FungLeo
  • FungLeo
  • 2016年05月20日 14:30
  • 10966

《C++语言基础》实践参考——分数类中的运算符重载

返回:贺老师课程教学链接【项目3-分数类中的运算符重载】  (1)实现分数类中的运算符重载,在分数类中可以完成分数的加减乘除(运算后再化简)、比较(6种关系)的运算。可以在第4周分数类代码的基础上开始...
  • sxhelijian
  • sxhelijian
  • 2015年04月21日 18:40
  • 1737
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:linux下apache.tomcat.mysql的整和(1)
举报原因:
原因补充:

(最多只允许输入30个字)