以下是对于如何利用树状数组进行区间修改和区间查询的简介
可以代替不需要lazy tag的线段树,且代码量和常数较小
首先你需要学会树状数组,如果不会的话以下先讲解黑匣子使用树状数组的姿势
首先定义一个数组 int c[N]; 并清空 memset(c, 0, sizeof c);
1、单点修改 : c[x] += y; 对应的函数是 change(x, y);
2、求前缀和 : 对应的函数是 int sum(x)
两种操作的复杂度都是O(logn)
模版如下
int c[N], maxn;
inline int Lowbit(int x){return x&(-x);}
void change(int i, int x)//i点增量为x
{
while(i <= maxn)
{
c[i] += x;
i += Lowbit(i);
}
}
int sum(int x){//区间求和 [1,x]
int ans = 0;
for(int i = x; i >= 1; i -= Lowbit(i))
ans += c[i];
return ans;
}
如何运用树状数组进行区间操作
先定义两个树状数组 X, Y
现在我们需要对一个数组 int a[N]; 进行区间操作:[L, R] += val 即 for i:L to R a[i] += val;
再定义一个 int size = R-L+1 , 即区间长度
对应的修改是
1、X[L] += val; X[R+1] -= val;
2、Y[L] += -1 * val * (L-1); Y[R+1] += val * R;
对应的查询是
当我们求和 时在树状数组中操作是 ans = X.sum(k) * k + Y.sum(k)
分类讨论一下k分别在 [1,L-1] , [L, R] , [R+1, +]
1、k[1,L-1]
显然 X.sum(k) == 0 且 Y.sum(k) == 0 -> ans = X.sum(k)*k + Y.sum(k) = 0*i+0 = 0 结果与实际相符。
2、k[L, R]
X.sum(k) * k = X[L] * k = val * k, Y.sum(k) = Y[L] = -1 * val * (L-1)
ans = val * k - val * (L-1) = val * ( k - (L-1) );
3、k[R+1,
]
X.sum(k) * k = ( x[L] + x[R] ) * k = 0 * k = 0;
Y.sum(k) = Y[L] + Y[R] = -val * (L-1) + val * R = val * (R-L+1) = val * size
X.sum(k) * k + Y.sum(k) = val * size
证毕
以下模版中两个树状数组c[0], c[1] 对应上述的X, Y
区间修改:add(L, R, val)
求 int a[N]的前缀和 get_pre(R)
区间查询:get(L,R)
const int N = 4e5 + 100;
template<class T>
struct Tree{
T c[2][N];
int maxn;
void init(int x){
maxn = x+10; memset(c, 0, sizeof c);
}
inline int lowbit(int x){ return x&-x; }
T sum(T *b, int x){
T ans = 0;
if (x == 0)ans = b[0];
while (x)ans += b[x], x -= lowbit(x);
return ans;
}
void change(T *b, int x, T value){
if (x == 0)b[x] += value, x++;
while (x <= maxn)b[x] += value, x += lowbit(x);
}
T get_pre(int r){
return sum(c[0], r) * r + sum(c[1], r);
}
void add(int l, int r, T value){//区间加权
change(c[0], l, value);
change(c[0], r + 1, -value);
change(c[1], l, value * (-l + 1));
change(c[1], r + 1, value * r);
}
T get(int l, int r){//区间求和
return get_pre(r) - get_pre(l - 1);
}
};
Tree<ll> tree;