关闭

【深度学习系列】手写数字识别--卷积神经网络CNN原理详解(一)

上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度。有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下。在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下...
阅读(22) 评论(0)

一文弄懂神经网络中的反向传播——BackPropagation

最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用。如果...
阅读(57) 评论(0)

Softmax回归(Softmax Regression)

转载请注明出处:http://www.cnblogs.com/BYRans/   多分类问题    在一个多分类问题中,因变量y有k个取值,即。例如在邮件分类问题中,我们要把邮件分为垃圾邮件、个人邮件、工作邮件3类,目标值y是一个有3个取值的离散值。这是一个多分类问题,二分类模型在这里不太适用。    多分类问题符合多项分布。有许多算法可用于解决多分类问题,像决策树、朴素贝...
阅读(30) 评论(0)

广义线性模型(Generalized Linear Models)

转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/        前面的文章已经介绍了一个回归和一个分类的例子。在逻辑回归模型中我们假设:            在分类问题中我们假设:           他们都是广义线性模型中的一个例子,在理解广义线性模型之前需要先理解指数分布族。   指数分布族(The...
阅读(32) 评论(0)

牛顿方法(Newton's Method)

转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/          在讲义《线性回归、梯度下降》和《逻辑回归》中我们提到可以用梯度下降或梯度上升的方式求解θ。在本文中将讲解另一种求解θ的方法:牛顿方法(Newton's method)。   牛顿方法(Newton's method)      逻辑回归中利用Sigmoi...
阅读(86) 评论(0)

逻辑回归(Logistic Regression)

转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/       本文主要讲解分类问题中的逻辑回归。逻辑回归是一个二分类问题。   二分类问题     二分类问题是指预测的y值只有两个取值(0或1),二分类问题可以扩展到多分类问题。例如:我们要做一个垃圾邮件过滤系统,是邮件的特征,预测的y值就是邮件的类别,是垃圾邮件还是正常邮件...
阅读(53) 评论(0)

局部加权回归、欠拟合、过拟合(Locally Weighted Linear Regression、Underfitting、Overfitting)

转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/        本文主要讲解局部加权(线性)回归。在讲解局部加权线性回归之前,先讲解两个概念:欠拟合、过拟合,由此引出局部加权线性回归算法。   欠拟合、过拟合     如下图中三个拟合模型。第一个是一个线性模型,对训练数据拟合不够好,损失函数取值较大。如图中第二个模型,如果我...
阅读(25) 评论(0)

损失函数(Loss Function)

转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/        线性回归中提到最小二乘损失函数及其相关知识。对于这一部分知识不清楚的同学可以参考上一篇文章《线性回归、梯度下降》。本篇文章主要讲解使用最小二乘法法构建损失函数和最小化损失函数的方法。   最小二乘法构建损失函数     最小二乘法也一种优化方法,用于求得目标函数...
阅读(43) 评论(0)

线性回归、梯度下降(Linear Regression、Gradient Descent)

线性回归、梯度下降(Linear Regression、Gradient Descent) 转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/   实例     首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积、卧室数量和房屋的交易价格,如下表:          假如有一个房子要卖,我们希望通过上表中的数据估算...
阅读(41) 评论(0)

李宏毅机器学习课程笔记2:Classification、Logistic Regression、Brief Introduction of Deep Learning

台湾大学李宏毅老师的机器学习课程是一份非常好的ML/DL入门资料,李宏毅老师将课程录像上传到了YouTube,地址:NTUEE ML 2016。  这篇文章是学习本课程第4-6课所做的笔记和自己的理解。 Lecture 4: Classification: Probabilistic Generative Model 以根据宝可梦各属性值预测其类型为例说明分类问题。  训练数据...
阅读(59) 评论(0)

李宏毅机器学习课程笔记1:Regression、Error、Gradient Descent

台湾大学李宏毅老师的机器学习课程是一份非常好的ML/DL入门资料,李宏毅老师将课程录像上传到了YouTube,地址:NTUEE ML 2016。  这篇文章是学习本课程第1-3课所做的笔记和自己的理解。 Lecture 1: Regression - Case Study machine learning 有三个步骤,step 1 是选择 a set of function, 即...
阅读(63) 评论(0)

Python-copy()与deepcopy()区别

我们来看代码: >>> import copy >>> origin = [1, 2, [3, 4]] #origin 里边有三个元素:1, 2,[3, 4] >>> cop1 = copy.copy(origin) >>> cop2 = copy.deepcopy(origin) >>> cop1 == cop2 True >>> cop1 is cop2 False #cop1 和 cop...
阅读(49) 评论(0)

python3.5版本中的zip函数

例如,有两个列表: 1 2 >>>a = [1,2,3] >>>b = [4,5,6] 使用zip()函数来可以把列表合并,并创建一个元组对的列表。 1 2 >>>zip(a,b) ...
阅读(91) 评论(0)

【python系列】numpy中的tile函数

tile函数         在看机器学习实战这本书时,遇到numpy.tile(A,B)函数,愣是没看懂怎么回事,装了numpy模块后,实验了几把,原来是这样子: 重复A,B次,这里的B可以时int类型也可以是远组类型。 [python] view plain copy >>> import numpy   >>> numpy.t...
阅读(38) 评论(0)

python: numpy--函数 shape用法

shape函数是numpy.core.fromnumeric中的函数,它的功能是查看矩阵或者数组的维数。 举例说明: 建立一个3×3的单位矩阵e, e.shape为(3,3),表示3行3列,第一维的长度为3,第二维的长度也为3 [plain] view plain copy   >>> e = eye(3)   >>>...
阅读(44) 评论(0)
94条 共7页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:31054次
    • 积分:541
    • 等级:
    • 排名:千里之外
    • 原创:4篇
    • 转载:86篇
    • 译文:4篇
    • 评论:4条
    文章分类
    最新评论