关闭

UVA 10601 Cubes (组合数学 + ploya计数)

标签: 组合数学ploya
292人阅读 评论(0) 收藏 举报
分类:

题意:

有12根等长火柴,每根火柴的颜色是6种颜色中的一种,输入每根火柴的颜色,求构成的立方体有多少种,旋转后完全相同的立方体视为相同。

思路:

一直以来只理解了ploya的皮毛。。所以看见这种题,可以求出置换种类,循环节个数,长度。。但依然不会计算。
一个立方体的旋转置换有24种,分别是:

  • 静止不动(包含1种置换),循环节有12个,每个长度为1;

  • 以对顶点的连线为轴,旋转120°,240°(包含4 × 2 = 8种置换),两种旋转角度的循环节均有4个,长度为3;

  • 以对边中点的连线为轴,旋转180°(包含6 × 1 = 6种置换),这种置换有两种长度的循环节,分别是轴所在对边构成的两个长度为1的循环节,以及其他边构成的5个长度为2的循环节;

  • 以对面中心的连线为轴,旋转90°,180°,270°(包含3 × 3 = 9种置换),旋转90°与270°的置换有3个长度为4的循环节,旋转180°的置换有6个长度为2的循环节。

知道置换种类与对应的循环节个数与长度后,就可以用组合计数的方式来统计每种置换的方案数,计算方式就是把12根火柴分成每一种置换的各个循环,如果不能分,即12不能整除循环节长度则该置换方案数为0.
处理有不同长度循环节的置换,可以将其拆分开来统计。

(看到有人用6维背包做,惊为天人。。

代码:

#include<bits/stdc++.h>
using namespace std;

typedef unsigned long long lint ;
lint C[13][13] ;
int cnt[7], a[7] ;
void init()
{
    C[0][0] = 1;
    for (int i = 1; i < 13; i++) {
        C[i][0] = 1;
        for (int j = 1; j < i + 1; j++) {
            C[i][j] = C[i-1][j] + C[i-1][j-1] ; ;
        }
    }
}

lint count(int k) 
{
    int n = 0 ;
    for (int i = 0; i < 6; i++) {
        if (cnt[i] % k == 0) {
            cnt[i] /= k ;
            n += cnt[i];
        }
        else return 0 ;
    }
    lint ret = 1 ;
    for (int i = 0; i < 6; i++) {
        ret *= C[n][cnt[i]] ;
        n -= cnt[i] ;
    }
    return ret ;
}
lint still()
{
    memcpy(cnt, a, sizeof a) ;
    return count(1) ;
}
lint point()
{
    memcpy(cnt, a, sizeof a) ;
    return 8 * count(3) ;
}
lint edge()
{
    lint ret = 0 ;
    for (int i = 0; i < 6; i++)
        for (int j = 0; j < 6; j++) {
            if (!a[i] || !a[j]) continue ;
            memcpy(cnt, a, sizeof a) ;
            cnt[i]-- ; cnt[j]-- ;
            ret += 6 * count(2) ;
        }
    return ret ;
}
lint plane()
{
    lint ret = 0 ;
    memcpy(cnt, a, sizeof a) ;
    ret += 3 * count(2) ;
    memcpy(cnt, a, sizeof a) ;
    ret += 6 * count(4) ;
    return ret ;
}
void work()
{
    lint ans = 0 ;
    ans += still() ;
    ans += point() ;
    ans += edge() ;
    ans += plane() ;
    cout << ans / 24 << endl ;
}
int main()
{
    init() ;
    int t ; cin >> t ;
    while (t-- ){
        memset(a, 0, sizeof a) ;
        for (int i = 0; i < 12; i++) {
            int col ; scanf("%d", &col) ;
            a[col-1]++ ;
        }
        work() ;
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:70340次
    • 积分:1954
    • 等级:
    • 排名:千里之外
    • 原创:127篇
    • 转载:2篇
    • 译文:0篇
    • 评论:15条
    最新评论