关闭

学习视频

89人阅读 评论(0) 收藏 举报
分类:
请转到原文地址http://blog.sina.com.cn/s/blog_8eac0b290101fn0z.html


如今机器学习的学习资源越来越多,对于入行的朋友们来说,他们只需要关注自己从事的具体研究方向最新的国际会议、杂志上的paper就差不多了,而对于那些想要入行的朋友们,选择经典的教程入手可能会事半功倍。以下这些教程,是我这些年接触机器学习以来觉得比较经典的,也欢迎朋友们补充。

一、公开课
Andrew Ng教授的机器学习课程。多啰嗦几句Andrew Ng,他虽然没出过啥书,但是他对这两年接触机器学习的人应该帮助最大了。这哥们是机器学习界大牛Michael Jordan的最得意的门生(据说没有之一),最早只是把公开课视频放到网上,国内网易公开课做了翻译,课程内容安排的真是深入浅出,只要有点微积分和线性代数基础,都能够看明白一些复杂算法的推导(其实这点很重要,一些大牛的paper或者书籍由于篇幅所限,往往一个公式推导需要10步,他只会写最重要的两步,对于初学者来说还是很痛苦的)。由于这个公开课视频受众甚广,好评如潮,Andrew Ng老师伙同斯坦福另一位同事Daphne Koller创建了Coursera这个在线教育平台,和公开课视频相比这个平台更注重和学生交互,能够帮助学生更好地掌握所follow的课程。

公开课推荐:
1、https://www.coursera.org/course/ml  Andrew Ng在coursera上的机器学习课程,相比公开课来说,内容更简单一些,入门甚佳。
3、https://www.coursera.org/course/pgm  Daphne Koller在course上图模型的课程
4、https://www.coursera.org/course/neuralnets  Geoffrey Hinton的神经网络的课。如果问最近业界最火的机器学习技术是啥?一定是deep learning。如果问是谁让deep learning这么火的,那就是Hinton老师。

应该还有其他类似的公开课资源,但我都没有看过,这里就不乱推荐了,欢迎大家补充。

二、经典书籍
1、Tom M.Mitchell. Machine Learning(有中文版)
2、Kevin P. MurphyMachine Learning: A Probabilistic Perspective
3、Christopher M.Bishop. Pattern Recognition and Machine Learning
4、Trevor Hastie , Robert Tibshirani , Jerome FriedmanThe Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition(有中文版)
5、Richard O. DudaPattern Classification(有中文版)
6、李航,统计学习方法
7、David Barber ,Bayesian Reasoning and Machine Learning(@星空下的巫师
个人认为前三本作为入门更合适一些,4还是有些艰深,5是我最初接触这个领域的时候,当时为数不多的参考书,对我个人帮助还是很大的,列在这里更多的是纪念一下。6是国内相关教程里最好的了,李老师将一些机器学习的经典算法介绍的非常详细,推导也没偷工减料,有点Andrew老师上课推公式的风范。

这些书籍基本上都有电子版可以google到,如果不行,推荐http://ishare.iask.sina.com.cn/,这真是一个神奇的地方,找外国图书的电子版效果甚佳。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:8220次
    • 积分:503
    • 等级:
    • 排名:千里之外
    • 原创:42篇
    • 转载:15篇
    • 译文:0篇
    • 评论:0条
    最新评论