关闭

查找(一)静态表查找

标签: 静态查找
367人阅读 评论(0) 收藏 举报
分类:

静态表查找包括:顺序表查找、有序表查找、静态树表查找、索引表查找
具体原理这里不叙述,详见严蔚敏《数据结构》。

1、顺序表查找

//SequenceTableSearch.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef char KeyType;//定义关键字类型
typedef struct{
    KeyType key;
}ElemType;//定义元素类型

//定义静态查找表的顺序存储结构
typedef struct {
    ElemType *elem;
    int length;
}SSTable;

//此函数在顺序表中顺序查找关键字等于key的数据元素。
int Search_Seq(SSTable ST, KeyType key){
    //若找到,则函数值为该元素在表中的位置,否则返回0
    int i;

    ST.elem[0].key = key;//第0个元素做哨兵
    for (i = ST.length; strcmp(ST.elem[i].key, key); i++) ;//从后往前找

    return i;
}

2、有序表查找

有序表查找可以用多种查找方法,包括:折半查找、斐波那契查找、插值查找
折半查找最为常见。

//BinarySearch.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef char KeyType;//定义关键字类型
typedef struct{
    KeyType key;
}ElemType;//定义元素类型

//定义静态查找表的顺序存储结构
typedef struct {
    ElemType *elem;
    int length;
}SSTable;

//此函数在有序表ST中折半查找其关键字等于key的数据元素
int Search_Bin(SSTable ST, KeyType key){
    //若找到,函数返回该元素在表中的位置。否则返回0
    int low = 1,high=ST.length,mid;
    while (low<=high){
        mid = (low + high) / 2;
        if (!strcmp(key,ST.elem[mid].key)){
            return mid;
        }else if(strcmp(key,ST.elem[mid].key)<0){
            high = mid - 1;
        }else{
            low = mid + 1;
        }
    }

    return 0;
}

3、静态树表查找

静态树表可以是:静态最优查找树(Static Optimal Search Tree)、次优查找树(Nearly Optimal Search Tree)
这里给出次优查找树的建立。

//CreateSecondOptimalBiTree.c

#include <stdio.h>
#include <stdlib.h>
#include <math.h>


typedef char KeyType;//定义关键字类型
typedef struct{
    KeyType key;
}ElemType;//定义元素类型
typedef struct BiTNode{
    ElemType data;
    struct BiTNode *lchild, *rchild;
}BiTNode, *BiTree;

//data field
int i;
int min;
int dw;

//(读此代码必须看教科书算法原理描述)

//此函数创建一个次优查找树
void CreateSecondOptimalBiTree(BiTree T, ElemType R[], float sw[], int low, int high){
    //由有序表R[low...high]及其累计权值表sw(其中sw[0]==0)递归构造次优查找树

    i = low;
    min = abs(sw[high] - sw[low]);
    dw = sw[high] + sw[low - 1];

    for (int j = low+1; j <=high; j++){//选择最小的△Pi值
        if (abs(dw-sw[j]-sw[j-1])<min){
            i = j;
            min = abs(dw - sw[j] - sw[j - 1]);
        }
    }

    T = (BiTree)malloc(sizeof(BiTNode));
    T->data = R[i];//生成结点(第一次生成根)
    if (i == low) T->lchild = NULL;//左子树空
    else CreateSecondOptimalBiTree(T->lchild, R, sw, low, i - 1);//构造左子树
    if (i == high) T->rchild = NULL;//右子树空
    else CreateSecondOptimalBiTree(T->rchild, R, sw, i + 1, high);//构造右子树

}

4、索引表查找

详见教材。

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:120659次
    • 积分:3902
    • 等级:
    • 排名:第8374名
    • 原创:268篇
    • 转载:39篇
    • 译文:0篇
    • 评论:8条
    最新评论