关闭

AVL Tree(平衡二叉树)

标签: AVL平衡二叉树
270人阅读 评论(0) 收藏 举报
分类:
//AVL_Tree.c

#include <stdio.h>
#include <stdlib.h>

/*-------------------------------------------------------------------------------------
此间的过程阅读一定结合课本(严蔚敏数据结构)中的图示演示!!
--------------------------------------------------------------------------------------*/
#define LH +1   //左高
#define EH 0    //等高
#define RH -1   //右高
typedef int Boolean;
#define TRUE 1
#define FALSE 0

typedef char KeyType;//定义关键字类型
typedef struct{
    KeyType key;
}ElemType;//定义元素类型
typedef struct BSTNode{//定义树的结点类型
    ElemType data;
    int bf;//结点的平衡因子
    struct BSTNode *lchild, *rchild;
}BSTNode, *BSTree;


//data field
BSTree lc,rc,ld,rd;

//此函数用于单向右旋平衡处理
void R_Rotate(BSTree p){
    //对以*p为根的二叉排序树作右旋处理,处理之后*p指向新的树根结点
    //(即旋转处理之前的左子树的根结点)
    lc = p->lchild;//lc指向的*p的左子树根结点
    p->lchild = lc->rchild;//lc的右子树挂接为*p的左子树
    lc->rchild = p;
    p = lc;//p指向新的根结点
}

//此函数用于单向左旋平衡处理
void L_Rotate(BSTree p){
    //对以*p为根的二叉排序树作左旋处理,处理之后p指向新的树根结点
    //(即旋转处理之前的右子树的根结点)
    rc = p->rchild;//rc指向的*p的右子树根结点
    p->rchild = rc->lchild;//rc的左子树挂接为*p的右子树
    rc->lchild = p;
    p = rc;//p指向新的根结点
}

//此函数用于左平衡处理(包括LL,LR型二叉排序树平衡的调整)
void LeftBalance(BSTree T){
    //对以指针T所指结点为根的二叉树作左平衡旋转处理,本算法结束后,指针T指向新的根结点
    lc = T->lchild;//lc指向*T的左子树根结点
    switch (lc->bf){//检查*T的左子树的平衡度,并作相应平衡处理
        case LH:    //新结点插入在*T的左孩子的左子树上,要作单向右旋处理
            T->bf = lc->bf = EH;
            R_Rotate(T);
            break;
        case RH:    //新结点插入在*T的左孩子的右子树上,要作双向旋转处理
            rd = lc->rchild;    //rd指向*T的左孩子的右子树根

            switch (rd->bf){//修改*T及其左孩子的平衡因子
                case LH:
                    T->bf = RH;
                    lc->bf = EH;
                    break;
                case EH:
                    T->bf = lc->bf = EH;
                    break;
                case RH:
                    T->bf = EH;
                    lc->bf = LH;
                    break;
            }
            rd->bf = EH;
            L_Rotate(T->lchild);//对*T的左子树作左旋平衡处理
            R_Rotate(T);//对*T作右旋平衡处理
    }
}


//此函数用于右平衡处理(包括RR,RL型二叉排序树平衡的调整)
void RightBalance(BSTree T){
    //对以指针T所指结点为根的二叉树作右平衡旋转处理,本算法结束后,指针T指向新的根结点
    rc = T->rchild;//rc指向*T的右子树根结点
    switch (rc->bf){//检查*T的右子树的平衡度,并作相应平衡处理
    case LH:    //新结点插入在*T的右孩子的左子树上,要作双向旋转处理
        rd = rc->rchild;    //rd指向*T的右孩子的左子树根

        switch (rd->bf){//修改*T及其右孩子的平衡因子
        case LH:
            T->bf = EH;
            rc->bf = RH;
            break;
        case EH:
            T->bf = rc->bf = EH;
            break;
        case RH:
            T->bf = LH;
            rc->bf = EH;
            break;
        }
        rd->bf = EH;
        R_Rotate(T->rchild);//对*T的右子树作右旋平衡处理
        L_Rotate(T);//对*T作左旋平衡处理

    case RH:    //新结点插入在*T的右孩子的右子树上,要作单向左旋处理
        T->bf = rc->bf = EH;
        L_Rotate(T);
        break;
    }
}


//此函数用于在平衡二叉树中插入一个结点(若出现不平衡,则调整)
int InsertAVL(BSTree T, ElemType e, Boolean taller){
    //若在平衡的二叉排序树T中不存在和e有相同关键字的结点,则插入一个数据元素为e的新结点,并返回1,否则返回0
    //若因插入而使二叉排序树失去平衡,则作平衡旋转处理。布尔变量taller反映T长高与否。

    if (!T){//插入新结点,树“长高”,置taller为TRUE
        T = (BSTree)malloc(sizeof(BSTNode));
        T->data = e;
        T->lchild = T->rchild = NULL;
        T->bf = EH;
        taller = TRUE;
    }
    else{
        if (e.key == T->data.key){//树中已存在和e有相同关键字的结点则不插入
            taller = FALSE;
            return 0;
        }
        if (e.key < T->data.key){//应继续在*T的左子树中搜索
            if (!InsertAVL(T->lchild, e, taller))   return 0;//未插入
            if (taller){
                switch (T->bf){//检查*T的平衡度
                    case LH:    //原本左子树比右子树高,需要作左平衡处理
                        LeftBalance(T);
                        taller = FALSE;
                        break;
                    case EH:    //原本左右子树等高,现因左子树增高而使树增高
                        T->bf = LH;
                        taller = TRUE;
                        break;
                    case RH:    //原本右子树比左子树高,现在左右子树等高
                        T->bf = EH;
                        taller = FALSE;
                        break;
                }
            }
        }
        else{       //应继续在*T的右子树中进行搜索
            if (!InsertAVL(T->rchild, e, taller)) return 0;//未插入
            if (taller){
                switch (T->bf){//检查*T的平衡度
                    case LH:    //原本左子树比右子树高,现左右子树等高
                        T->bf = EH;
                        taller = FALSE;
                        break;
                    case EH:    //原本左右子树等高,现因右子树增高而使树增高
                        T->bf = RH;
                        taller = TRUE;
                        break;
                    case RH:    //原本右子树比左子树高,需要作右平衡处理
                        RightBalance(T);
                        taller = TRUE;
                        break;
                }
            }
        }
    }

    return 1;
}
1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:122082次
    • 积分:3940
    • 等级:
    • 排名:第8339名
    • 原创:268篇
    • 转载:39篇
    • 译文:0篇
    • 评论:8条
    最新评论