java nio理解(2)

原创 2016年08月28日 15:32:37

通道(Channel)


  • 既可以从通道中读取数据,又可以写数据到通道。但流的读写通常是单向的。
  • 通道可以异步地读写。
  • 通道中的数据总是要先读到一个Buffer,或者总是要从一个Buffer中写入。
正如上面所说,从通道读取数据到缓冲区,从缓冲区写入数据到通道。如下图所示: 
 

Channel的实现 

这些是Java NIO中最重要的通道的实现: 

  • FileChannel:从文件中读写数据。
  • DatagramChannel:能通过UDP读写网络中的数据。
  • SocketChannel:能通过TCP读写网络中的数据。
  • ServerSocketChannel:可以监听新进来的TCP连接,像Web服务器那样。对每一个新进来的连接都会创建一个SocketChannel。
基本的 Channel 示例 

下面是一个使用FileChannel读取数据到Buffer中的示例: 

Java代码 
  1. RandomAccessFile aFile = new RandomAccessFile("data/nio-data.txt""rw");  
  2. FileChannel inChannel = aFile.getChannel();  
  3.   
  4. ByteBuffer buf = ByteBuffer.allocate(48);  
  5.   
  6. int bytesRead = inChannel.read(buf);  
  7. while (bytesRead != -1) {  
  8.   
  9. System.out.println("Read " + bytesRead);  
  10. buf.flip();  
  11.   
  12. while(buf.hasRemaining()){  
  13. System.out.print((char) buf.get());  
  14. }  
  15.   
  16. buf.clear();  
  17. bytesRead = inChannel.read(buf);  
  18. }  
  19. aFile.close();  

注意 buf.flip() 的调用,首先读取数据到Buffer,然后反转Buffer,接着再从Buffer中读取数据。下一节会深入讲解Buffer的更多细节。 

  • 既可以从通道中读取数据,又可以写数据到通道。但流的读写通常是单向的。
  • 通道可以异步地读写。
  • 通道中的数据总是要先读到一个Buffer,或者总是要从一个Buffer中写入。
正如上面所说,从通道读取数据到缓冲区,从缓冲区写入数据到通道。如下图所示: 
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Pro Java 7 NIO2

  • 2012-05-03 09:29
  • 4.15MB
  • 下载

java nio 2

  • 2015-12-08 15:11
  • 4.71MB
  • 下载

Java NIO使用及原理之--缓冲器buffer(2)

转载自:李会军•宁静致远 在上一篇文章中介绍了缓冲区内部对于状态变化的跟踪机制,而对于NIO中缓冲区来说,还有很多的内容值的学习,如缓冲区的分片与数据共享,只读缓冲区等。在本文中我们来看...

Pro Java 7 NIO.2

  • 2013-11-07 17:25
  • 4.15MB
  • 下载

Java7 NIO2

  • 2015-03-31 18:06
  • 4.15MB
  • 下载

Java学习笔记--NIO2文件系统

JDK7提出了NIO2文件系统API,存取了默认文件系统进行各种输入/输出的API,既可简化现有的文档输入/输出API操作,也增加了许多过去没有提供的文件系统存取功能。NIO2架构在JDK7出现之前,...

Pro Java 7 NIO.2

  • 2016-12-02 10:26
  • 4.15MB
  • 下载

Pro Java 7 NIO.2.pdf

  • 2012-07-24 01:01
  • 4.15MB
  • 下载

2.Java NIO系列教程之Channel

Java NIO的通道类似流,但又有些不同: 既可以从通道中读取数据,又可以写数据到通道。但流的读写通常是单向的。通道可以异步地读写。通道中的数据总是要先读到一个Buffer,或者总是要从一个Buf...

Pro Java 7 NIO.2

  • 2014-06-17 13:13
  • 4.15MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)