关闭

halcon学习笔记——机器视觉工程应用的开发思路

标签: 应用halcon
1706人阅读 评论(0) 收藏 举报
分类:

机器视觉工程应用主要可划分为硬件和软件两大部分。

硬件:工程应用的第一步就是硬件选型。硬件选型很关键,因为它是你后面工作的基础。主要是光源、工业相机和镜头选择。

软件:目前业内商业库主要有Halcon,康耐视,DALSA,evision,NI等,开源库有OpenCV.其中NI的labview+vision模块。


机器视觉工程应用的基本开发思路是:

一、图像采集,二、图像分割,三、形态学处理,四、特征提取,五、输出结果。

下面在Halcon下对这四个步骤进行讲解。

一、图像采集:

Halcon通过imageacquisition interfaces对各种图像采集卡及各种工业相机进行支持。其中包括:模拟视频信号,数字视频信号Camera Link,数字视频信号IEEE 1394,数字视频信号USB2.0,数字视频信号Gigabit Ethernet等。
Halcon通过统一的接口封装上述不同相机的image acquisition interfaces,从而达到算子统一化。不同的相机只需更改几个参数就可变更使用。

Halcon图像获取的思路:1、打开设备,获得该设备的句柄。2、调用采集算子,获取图像。

1、打开设备,获得该设备的句柄。

open_framegrabber(‘DahengCAM’, 1, 1, 0, 0, 0, 0, ‘interlaced’, 8, ‘gray’, -1, ‘false’,’HV-13xx’, ‘1’, 1, -1, AcqHandle) //连接相机,并设置相关参数

Parameter

Values

Default

Type

Description

Name

‘DahengCAM’

string

Name of the HALCON interface.

HorizontalResolution

1

1

1表示水平全部,2为水平1/2,表示图像截取。

VerticalResolution
1 1
同上,表示垂直方向。

ImageWidth

0

integer

所需的图像部分的宽度(’0 ‘代表了完整的图像)。

ImageHeight 0 integer 所需的图像部分的高度(0”是完整的图像)
StartRow 0 integer 所需的图像部分左上方的像素行坐标
StartColumn 0 integer 所需的图像部分左上方的像素列坐标
Field 忽视
BitsPerChannel 忽视
ColorSpace ‘default’, ‘gray’, ‘rgb’ ‘gray’ string HALCON图像的通道模式
Generic 忽视
ExternalTrigger
‘false’, ‘true’
‘false’ string 外部触发状态
CameraType ‘HV-13xx’, ‘HV-20xx’, ‘HV-30xx’, ‘HV-31xx’,’HV-50xx’, ‘SV-xxxx’ ‘HV-13xx’ string 所连接的摄像机系列型。
Device ‘1’, ‘2’, ‘3’, … ‘1’ string 相机连接第一个设备号“1”,第二个设备编号“2”。
Port 忽视
LineIn 忽视

2、调用采集算子,获取图像。

grab_image (Image, AcqHandle) //(同步采集)完后处理图像,然后再采集图像。采集图像的速率受处理速度影响。
grab_image_async (Image, AcqHandle,MaxDelay) //(异步采集),一幅画面采集完后相机马上采集下一幅画面,不受处理速度影响。其中第三个参数为:MaxDelay,表示异步采集时可以允许的最大延时,本次采集命令距上次采集命令的时间不能超出MaxDelay,超出即重新采集。

图像采集其他相关算子:

 grab_image_start,该算子开始命令相机进行异步采集。只能与grab_image_async(异步采集)一起使用。

例子:

  • Select a suitable image acquisition interface nameAcqName
    open_framegrabber(AcqName,1,1,0,0,0,0,’default’,-1,’default’,-1.0,\
    ‘default’,’default’,’default’,-1,-1,AcqHandle)
    grab_image(Image1,AcqHandle)//进行同步采集
    • Start next grab
      grab_image_start(AcqHandle,-1.0)//命令相机进行异步图像采集开始
    • Process Image1 …
    • Finish asynchronous grab + start next grab
      grab_image_async(Image2,AcqHandle,-1.0)//读取异步采集的图像
    • Process Image2 …
      close_framegrabber(AcqHandle)

3、相机参数读写

读取相机参数:

info_framegrabber( : : Name, Query : Information, ValueList)

写相机参数:

set_framegrabber_param( : : AcqHandle, Param, Value : )

二、图像分割:

图像分割的定义:
所谓图像分割是指将图像中具有特殊含义的不同区域分割开来,这些区域是互相不交叉的,每个区域都满足特定区域的一致性。

1、基于阈值的图像分割

threshold —采用全局阈值分割图像。

格式: threshold(Image : Region : MinGray, MaxGray : )

自动全局阈值分割的方法:

(1)计算灰度直方图
(2)寻找出现频率最多的灰度值(最大值)
(3)在threshold中使用与最大值有一定距离的值作为阈值

代码:

gray_histo(Regions, Image,AbsoluteHisto, RelativeHisto) //计算出图像区域内的绝对和相对灰度值直方图。
PeakGray := sort_index(AbsoluteHisto)[255] //求出出现频率最多的灰度值
threshold(Image,Region,0,PeakGray-25)

bin_threshold — 使用一个自动确定的阈值分割图像。

格式: bin_threshold(Image : Region : : )

dyn_threshold —使用一个局部阈值分割图像。

格式: dyn_threshold(OrigImage, ThresholdImage : RegionDynThresh : Offset, LightDark : )

例子:

mean_image(Image,Mean,21,21)
dyn_threshold(Image,Mean, RegionDynThresh,15,’dark’)

var_threshold —阈值图像局部均值和标准差的分析。

格式: var_threshold(Image : Region : MaskWidth, MaskHeight, StdDevScale, AbsThreshold, LightDark : )

2、基于边缘的图像分割:寻找区域之间的边界

watersheds —从图像中提取分水岭和盆地。

格式: watersheds(Image : Basins, Watersheds : : )

watersheds_threshold —使用阈值从图像中提取分水岭和盆地。

格式: watersheds_threshold(Image : Basins : Threshold : )

3、基于区域的图像分割:直接创建区域

三、形态学处理

形态学处理以集合运算为基础。

腐蚀、膨胀、开操作、闭操作是所有形态学图像处理的基础。

开操作(先腐蚀再膨胀)使对象的轮廓变得光滑,断开狭窄的间断和消除细的突出物。

闭操作(先膨胀再腐蚀)消弥狭窄的间断和长细的鸿沟,消除小的孔洞,填补轮廓线的断裂。

形体学基础算子:

erosion1
dilation1
opening
closing

常用的形态学相关算子
connection
select_shape
opening_circle
closing_circle
opening_rectangle1
closing_rectangle1
complement
difference
intersection
union1
shaps_trans
fill_up

形态学高级算子:
boundary
skeleton

四、特征提取:

1、区域特征:

area
moments

smallest_rectangle1

smallest_circle

convexity:区域面积与凸包面积的比例

contlength:区域边界的长度

compactness

2、灰度特征

estimate_noise

select_gray

五、输出结果:

(1)获取满足条件的区域

(2)区域分类,比如OCR

(3)测量

(4)质量检测

作者:韩兆新

出处:http://hanzhaoxin.cnblogs.com/

本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:67650次
    • 积分:1370
    • 等级:
    • 排名:千里之外
    • 原创:61篇
    • 转载:29篇
    • 译文:1篇
    • 评论:5条
    文章分类
    最新评论