关闭

平面划分问题、超平面规划

标签: 平面规划超平面规划
293人阅读 评论(0) 收藏 举报
分类:

直线划分平面问题

题目描述

  给定n条直线,判断这n条直线最多能将平面划分为多少区域。

解析

   首先观察1条直线的划分情况。

   显而易见,1条直线分平面为两个区域。

   

   然后是2条直线的划分情况。

   

   接着是3条直线的划分情况。

   

 

    

通过观察,便可发现当加入n条直线的时候,这条直线将被之前的(n-1)条直线割为n份,每份都对应一块区域。设Fn为n条直线划分平面的区域数,那么有下面的递推关系:

 

下面讨论特殊的情况。

题目描述:

   给定n条折线,求这n条折线最多能将平面分为多少份。

   见下图。

   

分析:

   如果直接用折线想要找到递推关系式很困难的。

   将每条折线的折角的两条边反向延长既得到2n条直线的情况。见下图。

   

   

    

  这样如果有2n条直线的话,就有n个顶点。设Fnn条直线划分平面的区域数。Dn为n条折线划分的区域数。

  如果有n条折线,那么这里就有n个顶点、2n条直线。

  FnDn相比少了2n条线段,根据之前讨论的直线划分的情况,每条对应一块区域。所以可以得到下面的关系式:

  

超平面规划

切n刀最多能分成(n+1)(n^2-n+6)/6块。可以参考Peter Orlik和Hiroaki Terao的《Arrangements of Hyperplanes》,第一节就讲的这个问题。

参考网页:http://www.guokr.com/post/18688/

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:8716次
    • 积分:223
    • 等级:
    • 排名:千里之外
    • 原创:11篇
    • 转载:15篇
    • 译文:0篇
    • 评论:1条
    最新评论