平面划分问题、超平面规划

原创 2017年01月03日 11:44:29

直线划分平面问题

题目描述

  给定n条直线,判断这n条直线最多能将平面划分为多少区域。

解析

   首先观察1条直线的划分情况。

   显而易见,1条直线分平面为两个区域。

   

   然后是2条直线的划分情况。

   

   接着是3条直线的划分情况。

   

 

    

通过观察,便可发现当加入n条直线的时候,这条直线将被之前的(n-1)条直线割为n份,每份都对应一块区域。设Fn为n条直线划分平面的区域数,那么有下面的递推关系:

 

下面讨论特殊的情况。

题目描述:

   给定n条折线,求这n条折线最多能将平面分为多少份。

   见下图。

   

分析:

   如果直接用折线想要找到递推关系式很困难的。

   将每条折线的折角的两条边反向延长既得到2n条直线的情况。见下图。

   

   

    

  这样如果有2n条直线的话,就有n个顶点。设Fnn条直线划分平面的区域数。Dn为n条折线划分的区域数。

  如果有n条折线,那么这里就有n个顶点、2n条直线。

  FnDn相比少了2n条线段,根据之前讨论的直线划分的情况,每条对应一块区域。所以可以得到下面的关系式:

  

超平面规划

切n刀最多能分成(n+1)(n^2-n+6)/6块。可以参考Peter Orlik和Hiroaki Terao的《Arrangements of Hyperplanes》,第一节就讲的这个问题。

参考网页:http://www.guokr.com/post/18688/

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

超平面是什么?——理解超平面(SVM开篇之超平面详解)

研究了半天,终于对“超平面”有了个初步了解。          n 维空间中的超平面由下面的方程确定:                                                ...

机器学习系列(15)_SVM碎碎念part3:如何找到最优分离超平面

是的,咱们第1篇blog介绍了目标;第2篇blog介绍了向量相关的背景数学知识,看到了如何求解Margin的值;今天这个部分主要目的是和大家一起来看看,选择最优超平面的推理过程。 以下是本篇的一个简...

SVM开篇提到的超平面概念如何理解?

什么是超平面 我们最常见的平面概念是在三维空间中定义的: Ax+By+Cz+D=0 它由两个性质定义: 方程是线性的: 是空间点的各分量的线性组合方程数量为1 若抛却维度等于3的限制, 就...

机器学习中的超平面

一、仿射空间 (1)直线——1维仿射空间 给定n维的空间中,一条直线是方向向量v以及直线上的一点P决定。如下图所示: 图1:line figure illustration  ...
  • wtq1993
  • wtq1993
  • 2016年04月17日 22:49
  • 361

超平面(hyperplane)的定义

Hyperplane - Wikipedia Hyperplane – from Wolfram MathWorlda1,a2,…,ana_1,a_2,\ldots,a_n 为一组不全为 0 的纯量...

svm系列之最大分隔超平面

svm 最大分隔超平面
  • MosBest
  • MosBest
  • 2016年07月24日 23:39
  • 1206

主成分分析超平面样本划分

  • 2010年05月25日 13:24
  • 489KB
  • 下载

机器学习之感知机学习笔记第一篇:求输入空间R中任意一点X0到超平面S的距离

我的学习资料是“统计学习方法”,作者是李航老师,这本书很著名,百度有很多关于它的PDF。 作为学习笔记,就说明我还是属于学习中,所以,这个分类中我暂时不打算讨论详细的算法,这个分类会讲到我在学习遇到...

SVM(Support Vector Machine)读书笔记一(最佳分割超平面)

分类问题中,在一个线性不可分的样本上,通常需要用到一些Non-linear的特征,把低维度空间上的样本投影到高维度上,从而使得这些样本在高维度线性可分。但这投影过程通常也会有以下两个问题: 1. 如果...

谈谈超平面(hyperplane)

本文转自http://bubblexc.com/y2011/310/ 有些东西,还是说清楚的好,比如超平面(hyperplane)这个东西。 直线、平面 在说超平面之前,先说说 Rn ...
  • gxiaob
  • gxiaob
  • 2013年01月12日 22:06
  • 4682
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:平面划分问题、超平面规划
举报原因:
原因补充:

(最多只允许输入30个字)