遗传算法学习总结

原创 2016年08月29日 20:15:04

遗传算法是一种优化算法,实质是通过群体搜索,根据适者生存的原则进行逐代进化,最终得到最优解。

实现方法:
1.根据具体问题找到可行解的取值范围,类似于x∈(a,b),确定一种编码方式,通过数值串或字符串的方式表示每个可行解
2.确定适应度函数fitness(非负函数),用于判断每个解的好坏
3.确定进化的相关参数,种群规模、交叉概率、变异概率、进化终止条件(最大代数等)。

模型求解及算法
step1.设定参数:
种群大小:M=50
最大代数:G=1000
交叉率:Pc=1(交叉概率为1,保证种群充分进化)
变异率:Pm=0.1(变异发生可能性尽可能小)
step2.确定可行解的编码方式
step3.确定初始种群(可采用改良圈法求得一个较好的初始种群)
step4.确定目标函数(适应度函数)
step5.交叉操作
step6.变异操作
step7.选择(选择目标函数值最小的M个个体进化到下一代,保证父代的优良特性被遗传下来)

遗传算法求解一维无约束优化问题
matlab程序(网上找的,感觉很好用)

function [xv,fv] = myGA(fitness, a, b, M, G, Pc, Pm, eps)  
%   用遗传算法求解一维无约束优化问题  
%   待优化的目标函数 fitness  
%   自变量下界 a   
%   自变量上界 b   
%   种群个体数 M  
%   最大进化代数 G  
%   杂交概率 Pc  
%   变异概率 Pm  
%   自变量离散精度 eps  
%   目标变量取最大值时自变量的值: xm  
%   目标函数的最大值 fv  
%  
%   Example:  
%       function F = fitness(x)  
%       F = x^3-60*x^2+900*x+100;     
%   -------------------------------  
%       [xv,fv] = myGA(@fitness,0, 30, 50, 100, 0.9, 0.04, 0.01);  
%   --------------------------------------------------  
%       xv = 10  
%       fv = 4100  
%  
%   本程序在《精通MATLAB最优化计算》页315程序的基础上修改  

L = ceil(log2((b-a) / eps + 1));                %编码长度  
x = zeros(M, L);                               %种群  
nx = zeros(size(x));                            %滚动数组  
fx = zeros(M, 1);                              %适应度  
for i = 1:M  
    x(i,:) = Initial(L);  
end  

fv = -inf;  

for k = 1 : G  
    for i = 1 : M  
        fx(i) = fitness(Dec(a, b, x(i, :), L));  
        if (fx(i) > fv)  
            xv = Dec(a, b, x(i, :), L);  
            fv = fx(i);  
        end  
    end  

    sumfx = sum(fx);  
    Px = fx / sumfx;  

    PPx = zeros(M, 1);  
    PPx(1) = Px(1);                                 %概率叠加  
    for i = 2 : M  
        PPx(i) = PPx(i - 1) + Px(i);  
    end  

    selFather = 0;  
    for i = 1 : M  
        sita = rand();  
        for j = 1 : M  
            if (sita <= PPx(j))  
                selFather = j;                      %使用轮盘赌法进行选择父亲  
                break;  
            end  
        end  

        selMother = floor(rand() * M) + 1;         %母亲随机选择  
        posCut = floor(rand() * (L - 1)) + 1;       %交叉点  

        r1 = rand();  
        if (r1 <= Pc)  
            nx(i, 1 : posCut) = x(selFather, 1:posCut);  
            nx(i, (posCut + 1) : L) = x(selMother, (posCut + 1) : L);  
            r2 = rand();  
            if (r2 <= Pm)  
                posMut = floor(rand() * L) + 1;  
                nx(i, posMut) = ~nx(i, posMut);  
            end  
        else  
            nx(i, :) = x(selFather, :);  
        end  
    end  

    x = nx;  
end  

%--------------------------------------------------------  
%   初始化种群  
function  result = Initial(length)  
result = zeros(size(length()));  
for i = 1 : length  
    r = rand();  
    result(i) = round(r);  
end  

%----------------------------------------------------------  
%   编码转换  
function y = Dec(a, b, x, L)  
base = 2 .^ ((L - 1) : -1: 0);  
y = dot(base, x);  
y = a + y * (b - a) / (2 ^ L - 1);

当然如果matlab里有遗传工具箱gatool可以交互式操作就更方便些

版权声明:

相关文章推荐

遗传算法入门例子和总结

目录:   一.写在前面   二.遗传算法概述   三.一个简单问题描述   四.C语言实现  -------------------------------------...

遗传算法入门例子和总结

遗传算法的手工模拟计算示例 为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各     个主要执行步骤。         例:求下述二元函数的最大值:   ...

遗传算法(GA)学习笔记---旅行商问题(TSP)

本文转载自:http://blog.csdn.net/xuyuanfan/article/details/6726477。在此首先对作者表示感谢。(本文是关于遗传算法在”旅行商问题(TSP,Trave...

遗传算法和bp神经网络结合(神经网络权值学习)

BP算法的误差减小,是反梯度方向进行的。因此,极易陷入局部极小点的困境。一旦训练学习样本数目多,输入输出关系比较复杂, 网络的收敛速度变得缓慢。表现为对网络结构的初值要求很高。初值的不合理, 会造成B...

python DEAP学习1(遗传算法) 概览

Overview If you are used to any other evolutionary algorithm framework, you’ll notice we do things ...

python DEAP学习3(遗传算法) 0-1背包问题

Knapsack Problem: Inheriting from Set Again for this example we will use a very simple problem, the...

遗传算法与直接搜索工具箱学习笔记 二-----编写自己的目标函数

这一部分主要讲解如何写自己的目标函数。什么事目标函数呢?你使用遗传算法工具箱主要是想找到某一个函数的最优解吧,那么这个函数就是目标函数。这个函数你必须写成一个M文件的形式。这样才能符合遗传算法工具箱的...

遗传算法与直接搜索工具箱学习笔记 一-----概述

原文地址:yelper recommendation system 原文翻译与校对:@酒酒 && @寒小阳 时间:2016年10月。 出处:http://blog.csdn.net/han_xi...

缩水版遗传算法 学习笔记

遗传算法是在随机的初始数据下,经过一段时间的变化,最后收敛得到针对某类特定问题的一个或者多个解。 主要步骤有编码 选择 交叉 变异 这里以一个极其简单的探索迷宫出路的代码为例 增加对遗传算法的感性...

遗传算法学习心得

最近在看遗传算法,查了很多资料,所以做了如下一些总结,也希望对后面研究的人有些帮助.因为初学GA,文中自己的见解,不一定全对,感兴趣的可以一起探讨. I 简介 基本概念 遗传算法(Genetic...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)