【第22期】观点:IT 行业加班,到底有没有价值?

遗传算法学习总结

原创 2016年08月29日 20:15:04

遗传算法是一种优化算法,实质是通过群体搜索,根据适者生存的原则进行逐代进化,最终得到最优解。

实现方法:
1.根据具体问题找到可行解的取值范围,类似于x∈(a,b),确定一种编码方式,通过数值串或字符串的方式表示每个可行解
2.确定适应度函数fitness(非负函数),用于判断每个解的好坏
3.确定进化的相关参数,种群规模、交叉概率、变异概率、进化终止条件(最大代数等)。

模型求解及算法
step1.设定参数:
种群大小:M=50
最大代数:G=1000
交叉率:Pc=1(交叉概率为1,保证种群充分进化)
变异率:Pm=0.1(变异发生可能性尽可能小)
step2.确定可行解的编码方式
step3.确定初始种群(可采用改良圈法求得一个较好的初始种群)
step4.确定目标函数(适应度函数)
step5.交叉操作
step6.变异操作
step7.选择(选择目标函数值最小的M个个体进化到下一代,保证父代的优良特性被遗传下来)

遗传算法求解一维无约束优化问题
matlab程序(网上找的,感觉很好用)

function [xv,fv] = myGA(fitness, a, b, M, G, Pc, Pm, eps)  
%   用遗传算法求解一维无约束优化问题  
%   待优化的目标函数 fitness  
%   自变量下界 a   
%   自变量上界 b   
%   种群个体数 M  
%   最大进化代数 G  
%   杂交概率 Pc  
%   变异概率 Pm  
%   自变量离散精度 eps  
%   目标变量取最大值时自变量的值: xm  
%   目标函数的最大值 fv  
%  
%   Example:  
%       function F = fitness(x)  
%       F = x^3-60*x^2+900*x+100;     
%   -------------------------------  
%       [xv,fv] = myGA(@fitness,0, 30, 50, 100, 0.9, 0.04, 0.01);  
%   --------------------------------------------------  
%       xv = 10  
%       fv = 4100  
%  
%   本程序在《精通MATLAB最优化计算》页315程序的基础上修改  

L = ceil(log2((b-a) / eps + 1));                %编码长度  
x = zeros(M, L);                               %种群  
nx = zeros(size(x));                            %滚动数组  
fx = zeros(M, 1);                              %适应度  
for i = 1:M  
    x(i,:) = Initial(L);  
end  

fv = -inf;  

for k = 1 : G  
    for i = 1 : M  
        fx(i) = fitness(Dec(a, b, x(i, :), L));  
        if (fx(i) > fv)  
            xv = Dec(a, b, x(i, :), L);  
            fv = fx(i);  
        end  
    end  

    sumfx = sum(fx);  
    Px = fx / sumfx;  

    PPx = zeros(M, 1);  
    PPx(1) = Px(1);                                 %概率叠加  
    for i = 2 : M  
        PPx(i) = PPx(i - 1) + Px(i);  
    end  

    selFather = 0;  
    for i = 1 : M  
        sita = rand();  
        for j = 1 : M  
            if (sita <= PPx(j))  
                selFather = j;                      %使用轮盘赌法进行选择父亲  
                break;  
            end  
        end  

        selMother = floor(rand() * M) + 1;         %母亲随机选择  
        posCut = floor(rand() * (L - 1)) + 1;       %交叉点  

        r1 = rand();  
        if (r1 <= Pc)  
            nx(i, 1 : posCut) = x(selFather, 1:posCut);  
            nx(i, (posCut + 1) : L) = x(selMother, (posCut + 1) : L);  
            r2 = rand();  
            if (r2 <= Pm)  
                posMut = floor(rand() * L) + 1;  
                nx(i, posMut) = ~nx(i, posMut);  
            end  
        else  
            nx(i, :) = x(selFather, :);  
        end  
    end  

    x = nx;  
end  

%--------------------------------------------------------  
%   初始化种群  
function  result = Initial(length)  
result = zeros(size(length()));  
for i = 1 : length  
    r = rand();  
    result(i) = round(r);  
end  

%----------------------------------------------------------  
%   编码转换  
function y = Dec(a, b, x, L)  
base = 2 .^ ((L - 1) : -1: 0);  
y = dot(base, x);  
y = a + y * (b - a) / (2 ^ L - 1);

当然如果matlab里有遗传工具箱gatool可以交互式操作就更方便些

版权声明: 举报

相关文章推荐

[转载]智能算法学习笔记-模拟退火,遗传算法,禁忌搜索,

遗传算法(GA)学习笔记---旅行商问题(TSP)

一、步骤: 二、重点: 1、编码 由于遗传算法不能直接处理问题空间的数据,所以我们必须将问题空间的数据映射成遗传空间的基因型串结构数据,而算法程序是可以处理遗传空间的基因型串结构数据的。比如现在要计算北京、天津、广东、新疆这四个城市的一条最优路径,但算法程序不能够直接处理北京、天津、广东、新疆...

程序员升职加薪指南!还缺一个“证”!

CSDN出品,立即查看!

遗传算法的初步学习(一)

由于需要,所以最近在看一些WSNS的资料,也接触到了以前自己一直想看看的遗传算法,我蹭这个机会稍微学习下。结合一些博客和文章,记录本次学习过程: 遗传算法(Genetic Algorithm)是模...

Matlab遗传算法学习-recint.m

  看书学习笔记   function NewChrom = recint(OldChrom, XOVR); % Identify the population size (Nind) and the number of variables (Nvar) [N...

python DEAP学习1(遗传算法)

Overview If you are used to any other evolutionary algorithm framework, you’ll notice we do things ...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)