跪舔

题意:

将一个正整数i的约数个数记为g(i),如g(1)=1,g(2)=2,g(6)=4。
如果对于一个正整数k,对于任意正整数i<k,均有g(k)>g(i),则k被称为反质数。
比如说1,2,4,6,12就是前5个反质数。
现在给定一个N,求N以内最大的反质数(N<=10^100)。

一个数的质因数分解形式为:

  n=p_1^a_1*p^2^a_2*p_3^a_3*...*p_k^a_k

则n的约数个数为

  g(n)=(a_1+1)*(a_2+1)*(a_3+1)*...*(a_n+1)

显然一个数是反质数,它的质因子一定是2,3,5,7,...,p_k的连续的一段,且2的指数>=3的指数>=5的指数>=7的指数,以此类推。要不然我们可以构造出一个更小的约数一样多的数。

用这个性质搜索可以通过10^15左右的数据,但是数据范围n<=10^100,怎么办呢?

通过观察小数据可以发现虽然用到了很多质数但大多数的次数是1,次数>=2的只有2、3、5、7等少数几个,这样我们枚举最大的质数,并且只枚举次数>2的质数,可以使速度提升,不过10^100还是过不了。

于是我就通过实验得出2的指数<=13,3的指数<=9,5的指数<=5。结果擦限AC了!O_O

注意用log是不行的,会有精度问题,必须用高精度。

OTZ SHUXK!求正解!!!!

CODE:

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cctype>
  
using  namespace  std;
   
const  int  P=350,N=30,MOD=10000;
   
struct  bigint{
     int  a[N];
     int  &operator[]( int  x){ return  a[x];}
     bigint(){
         memset (a,0, sizeof (a));
         a[0]=a[1]=1;
     }
     void  print();
};
   
inline  bool  operator==(bigint a,bigint b){
     if (a[0]!=b[0])  return  false ;
     for ( int  i=a[0];i;i--)
         if (a[i]!=b[i])  return  false ;
     return  true ;
}
   
inline  bool  operator>(bigint a,bigint b){
     if (a[0]>b[0])  return  true ;
     if (a[0]<b[0])  return  false ;
     for ( int  i=a[0];i;i--)
         if (a[i]>b[i])
             return  true ;
         else  if (a[i]<b[i])
             return  false ;
     return  false ;
}
   
inline  bigint operator*(bigint a, int  b){
     for ( int  i=a[0];i;i--){
         a[i]*=b;
         a[i+1]+=a[i]/MOD;
         a[i]%=MOD;
     }
     while (a[a[0]+1]) a[0]++;
     return  a;
}
   
inline  void  bigint::print(){
     printf ( "%d" ,a[a[0]]);
     for ( int  i=a[0]-1;i;i--)
         printf ( "%.4d" ,a[i]);
     printf ( "\n" );
}
   
int  tot,f[P],p[P],st[P],ast[P],dep;
//long double ans,y;
bigint ans,y;
bigint n;
unsigned  long  long  lt=1,mlt;
  
int  max( int  a, int  b){ return  a>b?a:b;}
  
void  getprime(){
     for ( int  i=2;i<=P;i++){
         if (!f[i]) p[++tot]=i;
         for ( int  j=1;j<=tot;j++){
             if (i*p[j]>P)  break ;
             f[i*p[j]]= true ;
             if (!(i%p[j]))  break ;
         }
     }
}
  
void  search( int  x, int  max,bigint y, long  long  lt){
     if (y>n)  return ;
     if (x==2&&max>9) max=9;
     if (x>=3&&max>5) max=5;
     if (x>dep){
         if (lt>mlt||mlt==lt&&ans>y)
             mlt=lt,ans=y;
         return ;
     }
     for ( int  i=1;i<=max;i++){
         y=y*p[x];
         search(x+1,i,y,lt*(i+1));
     }
}
//  6
int  main(){
     //freopen("a.in","r",stdin);
     int  i=0;
     int  s[200];
     getprime();
     n[0]=n[1]=0;
     for ( char  c= getchar (); isdigit (c);c= getchar ())
         s[++i]=c-48;
     for ( int  j=i;j>0;j-=4){
         int  tmp=0;
         for ( int  k=max(j-3,1);k<=j;k++) tmp=tmp*10+s[k];
         n[++n[0]]=tmp;
     }
     bigint x;
     long  double  lx=0;
         for (dep=1;dep<=10;dep++)
             search(1,9,bigint(),1);
     //scanf("%lld",&n);
     dep=10;
     for ( long  long  i=10,y=1;n>x;i++,x=x*p[i],y*=2)
         search(1,13,x,y);
     ans.print();
     //printf("%lld\n",mlt);
     return  0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值