可持久化并查集rope大法

原创 2016年08月29日 19:58:15
开始学习鬼畜stl
#include<iostream>
#include<cstdio>

#include<cstdlib>
#include<ext/rope>
using namespace std;
using namespace __gnu_cxx;
#define maxn 200005
int n,m;
rope<int> *fa[maxn];
int a[maxn];//int *a;
int find(int i,int x)
{ if(x!=fa[i]->at(x))
   {  int f=find(i,fa[i]->at(x));
       if(f==fa[i]->at(x))  return f;//本来这句话可以不加。但是因为replace有空间开销(自己猜测)所以这样可以省点空间的样子
	   fa[i]->replace(x,f);
	  return f; 

   }
   return x;
}
void Union(int i,int x,int y)
{
	  int fx=find(i,x),fy=find(i,y);
	   if(fx!=fy)   fa[i]->replace(fx,fy);
 } 
int main()
{  cin>>n>>m;
    for(int i=0;i<=n;i++)  a[i]=i;
     fa[0]=new rope<int>(a,a+n+1);//(&a[1],&a[n+1])
     
     for(int i=1;i<=m;i++)
     {  int op;scanf("%d",&op);
        if(op==1)
           { int a,b; scanf("%d%d",&a,&b);
             fa[i]=new rope<int>(*fa[i-1]);
              Union(i,a,b);
              continue;
		   }
		if(op==2)
		 {int k; scanf("%d",&k);
		   fa[i]=new rope<int>(*fa[k]);
		   continue;
		 }
		 if(op==3)
		   {  fa[i]=new rope<int>(*fa[i-1]);
		   
		   int a,b;scanf("%d%d",&a,&b);  
            printf("%d\n",(find(i,a)==find(i,b)));  
		    
			} 
	 }
	
	return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

【Rope大法好】【STL中丧心病狂的可持久化平衡树】

曾经我不会写平衡树……于是在STL中乱翻……学到了pb_ds库中

bzoj3673 可持久化并查集by zky

可持久化线段树

3674: 可持久化并查集加强版

Description Description: 自从zkysb出了可持久化并查集后…… hzwer:乱写能AC,暴力踩标程 KuribohG:我不路径压缩就过了! ndsf:暴力就可以...

可持久化并查集(一)——从阿克曼函数到镜像

noip2010 以下题目可以跳过。关押罪犯(prison.pas/c/cpp) 【问题描述】 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N。他们之间的关系自然也极不和谐。很多...

3673: 可持久化并查集 by zky

Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否...

【BZOJ】【P3673】【可持久化并查集】【题解】

传送门:www.lydsy.com:808/JudgeOnline/problem.php?id=3673 先开个坑,等过的人多了

可持久化并查集(外传)——[按秩启发式合并]

重新开坑奉上最近觉得的神作(至少从小说与这首曲子来说是这样的)。之前写到过可持久化并查集三部曲,现在想来,唯独没有提到按秩合并,在研习了启发式合并后,决定重新为并查集写一份外传,记录并查集的另一作用。...

关于可持久化并查集的学习和思考

鉴于noip比赛前集训时SAKER前辈教了我这个蒟蒻可持久化线段树以来,我懂得了如何维护一个支持历史查询的线段树。于是我就开始异想天开了:可不可以快速维护一个支持历史查询的数组呢? 就在这时,我上网看...
  • KsCla
  • KsCla
  • 2016-12-12 19:55
  • 1625

主席树——BZOJ3673/BZOJ3674 可持久化并查集(加强版)

http://www.lydsy.com/JudgeOnline/problem.php?id=3674 据说3673因为没有加强版而直接用暴力水掉了? 用主席树可以搞出来一个可持久化数组,然后就...

HDU 5923 Prediction [可持久化并查集]【数据结构】

题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5923 ——————————————————————————-. PredictionTime Li...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)