POJ 2533 O(nlogn)解最长递增子序列(构造法)

原创 2015年11月19日 19:22:16

Longest Ordered Subsequence
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 41083 Accepted: 18109
Description

A numeric sequence of ai is ordered if a1 < a2 < … < aN. Let the subsequence of the given numeric sequence (a1, a2, …, aN) be any sequence (ai1, ai2, …, aiK), where 1 <= i1 < i2 < … < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input

7
1 7 3 5 9 4 8
Sample Output

4

题意:
求一个序列的最长递增子序列,输出这个子序列的长度。
解法:
这是一个经典的dp问题,转移方程是dp[i] = dp[j] + 1,0 < j < i-1,并且j是在a[j] < a[i]范围内dp[j]最大的。由于每次寻找时,我们知道在a[j] < a[i]的范围内dp[j]是最大的。因此要顺序便利,这样总时间复杂度就是O(n^2)
给人的感觉就是在搜索j时顺序遍历太不聪明了。这一步应该有更好的办法。由此有二个算法。
考虑构造一个数组b[],这个数组里放的是已经找到的最优递增序列,那么,我们开始遍历a[i],如果a[i]比数组b[]最大一个元素(即最后一个元素)还要大。那么就把a[i]添加到数组b[]的尾部。如果不比最后一个元素大,那就在b[]里查找第一个比a[i]大的元素,然后将那个元素替换为a[i].保证b[]里面的元素是递增排列的。并且当a[i]可以替代b[]里的元素时进行替代。由于b[]里元素是有序的。因此可以用二分查找,就达到了优化的目标。时间复杂度变为O(nlogn).
在poj上此题用上O(nlogn)的算法,时间降从原来dp算法的16ms到0ms

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>

using namespace std;

int a[10010];
int b[10010];

int main()
{
    int n;
    scanf("%d",&n);
    int i,j;
    for(i = 1;i<=n;i++)
        scanf("%d",&a[i]);
    b[1] = a[1];
    int cnt = 1;
    for(i = 2;i<=n;i++){
        if(a[i]>b[cnt]) b[++cnt] = a[i];
        else{
            int k = lower_bound(b+1,b+cnt+1,a[i]) - b;
            b[k] = a[i];
        }
    }
    printf("%d",cnt);
    return 0;
}
版权声明:博客迁移到 yaokun.wiki

POJ2533, 最长上升子序列(贪心+二分查找时间复杂度O(nlogn))

解题思路参考这位大神的博客:点击打开链接。 在这里,我介绍下我对该方法的理解。 使用这种方法是对动态规划方法的一种优化,在用动态规划求解时,求到第i个元素的最长上升子序列时,是在前i-1个数中寻找,比...

每日三题-Day5-A(POJ 2533 Longest Ordered Subsequence 最长上升子序列O(nlogn)解法)

Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissi...

最长递增子序列LIS的O(nlogn)的求法

最长递增子序列(Longest Increasing Subsequence)是指n个数的序列的最长单调递增子序列。比如,A = [1,3,6,7,9,4,10,5,6]的LIS是1 3 6 7 9 ...

nlogn求最长上升子序列 (POJ2533)

nlogn求最长上升子序列 (POJ2533)Description求最长上升子序列。题解LIS裸题,但我这里想讲一下nlogn的做法。其实我们可以发现,在通常的LIS算法中的的二个循环的过程中,为了...
  • YJSchaf
  • YJSchaf
  • 2017年05月14日 15:23
  • 2166

poj 2533 Longest Ordered Subsequence 最长上升子序列,nlogn复杂度

代码:

poj 2533 Longest Ordered Subsequence 最长递增子序列

Longest Ordered SubsequenceTime Limit:2000MS    Memory Limit:65536KB    64bit IO Format:%I64d & %I...
  • wr132
  • wr132
  • 2016年03月14日 20:41
  • 268

poj 2533 最长递增子序列

题目大意:求最长递增子序列 解题思路:这道题,编程之美上有详细解答, 设lis[i]表示已第i个数字结尾的递增子序列的长度 lis[i+1] = max(1, lis[k] + 1) array...

最长递增子序列(poj-3903,1631我,1887(严格下降),2533(严格上升),LIS)

方法一:转换为LCS O(n^2)对原数组排序去重,用一次LCS,要用到滚动数组。 方法二:动态规划法 设f(i)表示L中以ai为末元素的最长递增子序列的长度。则有如下的递推方程: 这个递推方...

Longest Ordered Subsequence(最长单调递增子序列)poj2533+动态规划

Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissi...

poj 2533 Longest Ordered Subsequence(最长递增子序列)

http://poj.org/problem?id=2533
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 2533 O(nlogn)解最长递增子序列(构造法)
举报原因:
原因补充:

(最多只允许输入30个字)