# POJ 2533 O（nlogn）解最长递增子序列（构造法）

177人阅读 评论(0)

Longest Ordered Subsequence
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 41083 Accepted: 18109
Description

A numeric sequence of ai is ordered if a1 < a2 < … < aN. Let the subsequence of the given numeric sequence (a1, a2, …, aN) be any sequence (ai1, ai2, …, aiK), where 1 <= i1 < i2 < … < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input

7
1 7 3 5 9 4 8
Sample Output

4

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>

using namespace std;

int a[10010];
int b[10010];

int main()
{
int n;
scanf("%d",&n);
int i,j;
for(i = 1;i<=n;i++)
scanf("%d",&a[i]);
b[1] = a[1];
int cnt = 1;
for(i = 2;i<=n;i++){
if(a[i]>b[cnt]) b[++cnt] = a[i];
else{
int k = lower_bound(b+1,b+cnt+1,a[i]) - b;
b[k] = a[i];
}
}
printf("%d",cnt);
return 0;
}

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：28832次
• 积分：1999
• 等级：
• 排名：第19488名
• 原创：179篇
• 转载：1篇
• 译文：0篇
• 评论：2条
文章分类
阅读排行
最新评论