关闭

POJ 1836 DP(最长递增子序列)

标签: pojdp
91人阅读 评论(0) 收藏 举报
分类:

Alignment
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 14860 Accepted: 4841

Description

In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are aligned in a straight line in front of the captain. The captain is not satisfied with the way his soldiers are aligned; it is true that the soldiers are aligned in order by their code number: 1 , 2 , 3 , … , n , but they are not aligned by their height. The captain asks some soldiers to get out of the line, as the soldiers that remain in the line, without changing their places, but getting closer, to form a new line, where each soldier can see by looking lengthwise the line at least one of the line’s extremity (left or right). A soldier see an extremity if there isn’t any soldiers with a higher or equal height than his height between him and that extremity.

Write a program that, knowing the height of each soldier, determines the minimum number of soldiers which have to get out of line.

Input

On the first line of the input is written the number of the soldiers n. On the second line is written a series of n floating numbers with at most 5 digits precision and separated by a space character. The k-th number from this line represents the height of the soldier who has the code k (1 <= k <= n).

There are some restrictions:
• 2 <= n <= 1000
• the height are floating numbers from the interval [0.5, 2.5]

Output

The only line of output will contain the number of the soldiers who have to get out of the line.
Sample Input

8
1.86 1.86 1.30621 2 1.4 1 1.97 2.2

Sample Output

4

Alignment
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 14860 Accepted: 4841

Description

In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are aligned in a straight line in front of the captain. The captain is not satisfied with the way his soldiers are aligned; it is true that the soldiers are aligned in order by their code number: 1 , 2 , 3 , … , n , but they are not aligned by their height. The captain asks some soldiers to get out of the line, as the soldiers that remain in the line, without changing their places, but getting closer, to form a new line, where each soldier can see by looking lengthwise the line at least one of the line’s extremity (left or right). A soldier see an extremity if there isn’t any soldiers with a higher or equal height than his height between him and that extremity.

Write a program that, knowing the height of each soldier, determines the minimum number of soldiers which have to get out of line.

Input

On the first line of the input is written the number of the soldiers n. On the second line is written a series of n floating numbers with at most 5 digits precision and separated by a space character. The k-th number from this line represents the height of the soldier who has the code k (1 <= k <= n).

There are some restrictions:
• 2 <= n <= 1000
• the height are floating numbers from the interval [0.5, 2.5]

Output

The only line of output will contain the number of the soldiers who have to get out of the line.
Sample Input

8
1.86 1.86 1.30621 2 1.4 1 1.97 2.2

Sample Output

4

题意:
有一队士兵,每个人有一个身高。从中踢走一些人,使得剩下的人都可以看到最左边或者最右边(也就是身高排列成一个梯形)。
解法:
将这个队列的最长递增子序列求出来,dp[i]表示到i位置时的最长递增子序列长度。然后我们可以把求dp[]的操作写到一个函数里,然后将原来的序列逆序一些,再调用那个函数,这样就得到了最长递减子序列长度。dp1[]是递增子序列长度,dp2[]是递减长度。那么接下来对每一个dp1[i],我们枚举dp2[]。即从递增里调一个,递减里挑一个组合起来,每一个这个操作得到的剔除的人数,记录剔除人数最少的那个数就可以了。

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#define MAXSIZE 1000 + 10

using namespace std;

int dp1[MAXSIZE];
int dp2[MAXSIZE];
double a[MAXSIZE];
double aa[MAXSIZE];
double b[MAXSIZE];
int n;

void solve(int* dp,double* v){
    dp[0] = 0;
    dp[1] = 1;
    int cnt = 1,i;
    b[cnt] = v[1];
    for(i = 2;i<=n;i++){
        if(v[i]>b[cnt]){
            b[++cnt] = v[i];
            dp[i] = cnt;
        }
        else{
            int k = lower_bound(b+1,b+cnt+1,v[i]) - b;
            dp[i] = k;
            b[k] = v[i];
        }
    }
}

int main()
{
//    freopen("data.in","r",stdin);
    while(scanf("%d",&n)!=EOF){
        int i,j;
        for(i = 1;i<=n;i++){
            scanf("%lf",&a[i]);
            aa[n+1-i] = a[i];
        }

        solve(dp1,a);

        solve(dp2,aa);

        int Min = 0x3f3f3f3f;

        for(i = 1;i<n;i++){
            for(j = 1;j<=n-i;j++){
                int tem = n - (dp1[i] + dp2[j]);
                if(tem<Min)
                    Min = tem;
            }
        }

        printf("%d\n",Min);

    }
    return 0;
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:31011次
    • 积分:2026
    • 等级:
    • 排名:第19710名
    • 原创:179篇
    • 转载:1篇
    • 译文:0篇
    • 评论:2条
    文章分类
    最新评论