51nod - 1661 黑板上的游戏 - 博弈论

原创 2016年08月31日 15:05:42

题目:51nod 算法马拉松 17(告别奥运)A 黑板的游戏
题意:两个人轮流玩擦数字游戏,给定nai(i=1,2,3,...,n)k,(1n105,2k1018,1ai1018)
每个人可以擦掉一个数x,(x>1),并写上一个数据x,(xkx<x),不能操作者为输。如果是先手赢则输出一种获胜的操作。

想法
nkai都给得那么大,肯定有规律,于是就打表了。最后果然发现了规律。单点的SG值可以通过一个接近O(1)的时间求出来。SG值求出来了,可是还有一个获胜操作就有点难搞了,相当于知道一个SG值,逆求该SG值对应的点。在这里走了不少弯路,最后弱智地发现,结论特么明显了。最后枚举每一个数,找到一种必胜操作就可以了。

#include <bits/stdc++.h>
using namespace std;


int sg[10000];    // 储存SG值
bool vis[10000];    // 
long long k, n;
int getSg(int x) {
    memset(vis, 0, sizeof(vis)); // 初始化集合
    std::vector<int> S;
    if(x>1)for(int i=(int)ceil(1.0*x/k); i<x; i++) S.push_back(i);
    // 生成所有的后继状态
    for(int i=0; i<S.size(); i++) {    // 遍历后继状态集合
        vis[sg[S[i]]] = 1;    // 从集合中去掉后继状态的SG值
    }
    for(int i=0; i<S.size()+1; i++) if(!vis[i]) return i; // 返回集合中最小的元素
    return 0;
}
void GenerateSg(int n) { // 生成[0, n)的SG值
    for(int i=0; i<n; i++) sg[i] = getSg(i);
}
// O(1)求该题的SG值
long long ssg(long long n) {
    if(n <= 1) return 0;
    if(n == 2) return 1;
    if((n-1)%k==0) {
        return ssg(n/k);
    }
    return n - ((n-1)/k) - 1;
}
// 知道SG值,逆求点
long long fanrenlei(long long sg) {
    long long ans = sg + sg / (k-1);
    ans += (ans % k) > 0;
    return ans;
}
// 打表打规律的过程
int main2() {
    k = 3;
    GenerateSg(1000);
    for(int i=0; i<400; i++) printf("sg[%d] = %d, ssg = %lld, frl = %lld\n", i, sg[i], ssg(i), fanrenlei(sg[i]));

    return 0;
}
long long Q[100005];
int main() {
    int n, index = -1;
    long long t, mmax = 0;
    cin >> n >> k;
    long long ans = 0;
    for(int i=1; i<=n; i++) {
        cin >> t; ans ^= ssg(t);
        Q[i] = t;
    }
    if(ans) {
        long long tmp, ttmp;
        bool OK = false;
        // 遍历每一个数,看能否找到必胜操作
        for(int i=1; i<=n; i++) {
            mmax = Q[i];
            tmp = ans^ssg(mmax), ttmp = (long long)ceil(1.0*mmax/k);
            tmp = fanrenlei(tmp);
            while(tmp < ttmp) {
                tmp = tmp * k + 1;
            }
            if(tmp < mmax) {
                OK = true;
                index = i;
            }
            if(OK) break;
        }
        //printf("%lld\n", ans^ssg(mmax));
        printf("Alice %d %lld\n", index, tmp);
    } else puts("Bob");
    return 0;
}
版权声明:转载时记得附上原文链接哦~

51nod 1661 黑板上的游戏(博弈sg函数找规律)

1661 黑板上的游戏 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 Alice和Bob在黑板上玩一个游戏,黑板上写了n个正整数a1, a2, ...
  • Miracle_ma
  • Miracle_ma
  • 2016年08月29日 13:39
  • 625

Nim游戏的一个扩展——51nod 1661 黑板上的游戏+LA 5059 Playing With Stones

前几天做过一道题目,是Nim游戏的一个扩展,也不能说扩展吧,只是说另一种常见的状态。 问题引入: 给定n堆石子,每堆石子有vi(1 思考: 当k==2的时候,显然就退化成了la 5059 ...
  • bobodem
  • bobodem
  • 2016年08月30日 21:11
  • 368

博弈论 三大游戏

Bash 游戏  有一堆石子共有N个。A B两个人轮流拿,A先拿。每次最少拿1颗,最多拿K颗,拿到最后1颗石子的人获胜。 假设A B都非常聪明,拿石子的过程中不会出现失误。给出N和K,问最后谁能赢...
  • WhiStLenA
  • WhiStLenA
  • 2017年10月15日 13:54
  • 291

博弈论 Nim游戏与SG函数

SG函数&Nim游戏
  • neighthorn
  • neighthorn
  • 2016年07月09日 21:41
  • 654

51Nod-1661-黑板上的游戏

ACM模版描述题解很少见官方题解如此长篇大论(详细):另外看到一个比较好的博客,讲得也十分详细,代码也十分的好,WildKid1024’s blog,由浅入深,赞一下。代码#include #inc...
  • f_zyj
  • f_zyj
  • 2017年09月20日 20:16
  • 139

51NOD 1661 黑板上的游戏(博弈 找规律)——算法马拉松17(告别奥运)

传送门1661 黑板上的游戏Alice和Bob在黑板上玩一个游戏,黑板上写了n个正整数a1, a2, …, an,游戏的规则是这样的:1 . Alice占有先手主动权。2 . 每个人可以选取一个大于1...
  • qingshui23
  • qingshui23
  • 2016年08月29日 12:58
  • 957

51nod 1661 黑板上的游戏(yjq魔改ver【x【博弈,稍微数学推一下

题意差不多就是那样……但是输出的方案(题面原话)是→“我们需要使得擦去的数字下标尽量大, 在此前提下, 我们希望写上的数字尽量大” 总之我胡搞乱搞只有52分,嗨呀好气啊,std是yjq的代码……yjq...
  • Flaze_
  • Flaze_
  • 2016年09月10日 23:57
  • 362

jzoj 1261 数字游戏

jzoj 1261
  • ssl_lyy
  • ssl_lyy
  • 2017年08月13日 18:05
  • 65

SSL 1653——数字游戏

Description  小W发明了一个游戏,他在黑板上写出了一行数字a1,a2,a3,……,an,然后给你M个回合的机会,每会回你可以从中选择一个数字擦去它,接着剩下来的每个数字ai都要递减一个值b...
  • SSL_ZZY
  • SSL_ZZY
  • 2017年03月15日 21:17
  • 195

leetCode之旅(5)-博弈论中极为经典的尼姆游戏

题目介绍You are playing the following Nim Game with your friend: There is a heap of stones on the table,...
  • u010321471
  • u010321471
  • 2016年03月29日 17:14
  • 1345
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:51nod - 1661 黑板上的游戏 - 博弈论
举报原因:
原因补充:

(最多只允许输入30个字)