51nod - 1661 黑板上的游戏 - 博弈论

原创 2016年08月31日 15:05:42

题目:51nod 算法马拉松 17(告别奥运)A 黑板的游戏
题意:两个人轮流玩擦数字游戏,给定nai(i=1,2,3,...,n)k,(1n105,2k1018,1ai1018)
每个人可以擦掉一个数x,(x>1),并写上一个数据x,(xkx<x),不能操作者为输。如果是先手赢则输出一种获胜的操作。

想法
nkai都给得那么大,肯定有规律,于是就打表了。最后果然发现了规律。单点的SG值可以通过一个接近O(1)的时间求出来。SG值求出来了,可是还有一个获胜操作就有点难搞了,相当于知道一个SG值,逆求该SG值对应的点。在这里走了不少弯路,最后弱智地发现,结论特么明显了。最后枚举每一个数,找到一种必胜操作就可以了。

#include <bits/stdc++.h>
using namespace std;


int sg[10000];    // 储存SG值
bool vis[10000];    // 
long long k, n;
int getSg(int x) {
    memset(vis, 0, sizeof(vis)); // 初始化集合
    std::vector<int> S;
    if(x>1)for(int i=(int)ceil(1.0*x/k); i<x; i++) S.push_back(i);
    // 生成所有的后继状态
    for(int i=0; i<S.size(); i++) {    // 遍历后继状态集合
        vis[sg[S[i]]] = 1;    // 从集合中去掉后继状态的SG值
    }
    for(int i=0; i<S.size()+1; i++) if(!vis[i]) return i; // 返回集合中最小的元素
    return 0;
}
void GenerateSg(int n) { // 生成[0, n)的SG值
    for(int i=0; i<n; i++) sg[i] = getSg(i);
}
// O(1)求该题的SG值
long long ssg(long long n) {
    if(n <= 1) return 0;
    if(n == 2) return 1;
    if((n-1)%k==0) {
        return ssg(n/k);
    }
    return n - ((n-1)/k) - 1;
}
// 知道SG值,逆求点
long long fanrenlei(long long sg) {
    long long ans = sg + sg / (k-1);
    ans += (ans % k) > 0;
    return ans;
}
// 打表打规律的过程
int main2() {
    k = 3;
    GenerateSg(1000);
    for(int i=0; i<400; i++) printf("sg[%d] = %d, ssg = %lld, frl = %lld\n", i, sg[i], ssg(i), fanrenlei(sg[i]));

    return 0;
}
long long Q[100005];
int main() {
    int n, index = -1;
    long long t, mmax = 0;
    cin >> n >> k;
    long long ans = 0;
    for(int i=1; i<=n; i++) {
        cin >> t; ans ^= ssg(t);
        Q[i] = t;
    }
    if(ans) {
        long long tmp, ttmp;
        bool OK = false;
        // 遍历每一个数,看能否找到必胜操作
        for(int i=1; i<=n; i++) {
            mmax = Q[i];
            tmp = ans^ssg(mmax), ttmp = (long long)ceil(1.0*mmax/k);
            tmp = fanrenlei(tmp);
            while(tmp < ttmp) {
                tmp = tmp * k + 1;
            }
            if(tmp < mmax) {
                OK = true;
                index = i;
            }
            if(OK) break;
        }
        //printf("%lld\n", ans^ssg(mmax));
        printf("Alice %d %lld\n", index, tmp);
    } else puts("Bob");
    return 0;
}
版权声明:转载时记得附上原文链接哦~

相关文章推荐

51nod 1490 多重游戏

1490 多重游戏 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 有一个两人游戏,游戏是这样的,有n个非空串...

51NOD 1067 Bash游戏 V2 (找规律)

题目链接   :   https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1067 1067 Bash游戏 V2 ...

51Nod_1067Bash游戏 V2

原题链接 有一堆石子共有N个。A B两个人轮流拿,A先拿。每次只能拿1,3,4颗,拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出N,问最后谁能赢得比赛。 例如N ...

51Nod - 1069 Nim游戏

1069 Nim游戏 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 有N堆石子。A B两个人轮流拿,...

51nod 1459 迷宫游戏

题目描述: 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 你来到一个迷宫前。该迷宫由若干个房间组成,每个房间都有一个得分,第...

51Nod-1484-猜数游戏

ACM模版描述 题解算法思路很容易想,就是区间交和区间并问题,然而我却坑死在了迭代器的陷阱上!!!这里出现的问题主要是迭代器的陷阱——迭代器失效。如果用迭代器删除指定位置的元素,那么该操作返回的是一...
  • f_zyj
  • f_zyj
  • 2016-09-27 21:01
  • 382

51nod 1390 游戏得分【贪心+思维+谨慎】

A与B两人玩一个游戏,这个游戏有若干个回合(可能0回合)。游戏的回合依次标号为1,2,3,4...。你不需要关心游戏的内容,现在只要知道第i回合胜者会获得2*i-1分,每回合游戏不存在平局。现在已知A...

51NOD 1418 放球游戏 模拟

1418 放球游戏 题目来源: TopCoder 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 有N个球排成一排,每个球都是R、G、B三种颜色之一。...

51nod 1417 天堂里的游戏

题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1417 题目: 正当Noder惊魂未定的时候,走来一个...

[51nod1169]石子游戏

Description有n堆石子,第i堆有ai个。 现在要从这n堆石子的任意堆中拿走任意个石子,使得如果两个人用这n堆石子玩nim游戏先手必败。 但要求至少有一堆石子不动。 求方案数对1e9+7...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)