最长递增子序列 动态规划 java代码

原创 2015年11月20日 22:15:31

最长递增子序列
【题目】
给定数组arr,返回arr的最长递增子序列。
【举例】
arr=[2,1,5,3,6,4,8,9,7],返回的最长递增子序列为[1,3,4,8,9]。
【要求】
如果arr长度为N,请实现时间复杂度为O(N*logN)的方法。

//有错误请告知十分感谢

题目来自牛客堂http://www.nowcoder.com/discuss/1861 内附IBM 百度软件攻城狮视频讲解 28分8秒开始正题。

代码分为两部分,也就是两种不同的方法,ls1+getdp1+test 的时间复杂度为O(n*n),ls2+getdp2+test的时间复杂度为O(n*log n);

arr数组是题目给出的数组,方法1使用到dp数组。方法2使用dp数组和一个额外的help数组。两个方法中的dp数组都用于记录对应arr数组中的元素之前的最长递增子序列的长度。通过arr数组我们求出dp数组。对于每个dp【i】,去遍历i之前的所有dp【j】,对于每个arr【j】<arr【i】,找出arr【j】对应的dp【j】最大值+1,然后放入dp【i】。

举个例子,arr【0】=2。dp【0】就是2及其之前最长递增子序列的长度,肯定是1。

arr【1】=1。dp【1】就是1及其之前最长递增子序列的长度,还是1。

arr【2】=5。dp【2】,我们来看dp【0】和dp【1】,他们都是1,而且arr【0】和arr【1】都小于arr【2】,那么我们把2放入dp【2】。

arr【3】=3。dp【3】,我们看dp【0】,dp【1】,dp【2】,只有arr【0】和arr【1】小于arr【3】,那么dp【3】=1+1=2。

这样我们从dp中寻找最大值就得到最长递增子序列的长度。

然后通过arr【j】< arr【i】&& dp【j】= dp【i】-1 倒推出最长递增子序列。

通过arr和dp数组生成最长递归子序列的时间复杂度为O(n);所以可以忽略。

视频讲解者所说在人们长期使用递归时发现的一些方法来以空间换时间,而这种交换通常是很值得的,但是使用非递归类方法通常更难理解。



public class Problem_05_LIS {

	public static int[] lis1(int[] arr) {
		if (arr == null || arr.length == 0) {
			return null;
		}
		int[] dp = getdp1(arr);
		return generateLIS(arr, dp);
	}

	public static int[] getdp1(int[] arr) {
		int[] dp = new int[arr.length];
		for (int i = 0; i < arr.length; i++) {
			dp[i] = 1;
			for (int j = 0; j < i; j++) {
				if (arr[i] > arr[j]) {
					dp[i] = Math.max(dp[i], dp[j] + 1);
				}
			}
		}
		return dp;
	}

	public static int[] generateLIS(int[] arr, int[] dp) {
		int len = 0;
		int index = 0;
		for (int i = 0; i < dp.length; i++) {
			if (dp[i] > len) {
				len = dp[i];
				index = i;
			}
		}
		int[] lis = new int[len];
		lis[--len] = arr[index];
		for (int i = index; i >= 0; i--) {
			if (arr[i] < arr[index] && dp[i] == dp[index] - 1) {
				lis[--len] = arr[i];
				index = i;
			}
		}
		return lis;
	}

	public static int[] lis2(int[] arr) {
		if (arr == null || arr.length == 0) {
			return null;
		}
		int[] dp = getdp2(arr);
		return generateLIS(arr, dp);
	}

	public static int[] getdp2(int[] arr) {
		int[] dp = new int[arr.length];
		int[] ends = new int[arr.length];
		ends[0] = arr[0];
		dp[0] = 1;
		int right = 0;
		int l = 0;
		int r = 0;
		int m = 0;
		for (int i = 1; i < arr.length; i++) {
			l = 0;
			r = right;
			while (l <= r) {
				m = (l + r) / 2;
				if (arr[i] > ends[m]) {
					l = m + 1;
				} else {
					r = m - 1;
				}
			}
			right = Math.max(right, l);
			ends[l] = arr[i];
			dp[i] = l + 1;
		}
		return dp;
	}

	// for test
	public static void printArray(int[] arr) {
		for (int i = 0; i != arr.length; i++) {
			System.out.print(arr[i] + " ");
		}
		System.out.println();
	}

	public static void main(String[] args) {
		int[] arr = { 2, 1, 5, 3, 6, 4, 8, 9, 7 };
		printArray(arr);
		printArray(lis1(arr));
		printArray(lis2(arr));

	}
}

Java-LIS最长递增子序列(动态规划实现)

问题:找出给定数组最长且单调递增的子序列。         解决思路:原数组arr的子序列顺序保持不变,而且排序后的array本身是递增的。这样得到的两个序列的子序列一定是递增的序列。要求出数组ar...

程序员面试金典(动态规划):叠罗汉问题_最长递增子序列(java解法)

题目描述: 叠罗汉是一个著名的游戏,游戏中一个人要站在另一个人的肩膀上。同时我们应该让上面的人比下面的人更高一点。已知参加游戏的每个人的身高,请编写代码计算通过选择参与游戏的人,我们...

动态规划(篇2)最长递增子序列(LIS)

最长增加子序列(LIS)问题是找到给定序列的最长子序列的长度,使得子序列的所有元素以增加的顺序排序。例如,{10,22,9,33,21,50,41,60,80 }的LIS的长度为6,LIS为 {10,...

动态规划 最长递增子序列 oj合唱团问题

HWOJ 合唱团问题 用空间解决时间复杂度,建立两个数组left和right,存储数组从左/从右以每个数字为最终节点的最长递增子序列。两个数组相加某位最大值即为题目要求的排列。因为重复了一个公共...

最长递增子序列--动态规划

动态规划方法是集合的递推。 1、  最长单调递增子序列 LIS 给定10,4,20,10,15,13 序列(假设从第1项开始)。 确定状态: 以第i项结尾的最长单调递增子序列的长度为f(i)。 初始状...

动态规划4:LIS最长递增子序列问题

动态规划4:LIS最长递增子序列问题

动态规划求最长递增子序列(BJFUOJ 1482)

Ivan的决心 时间限制(C/C++):1000MS/3000MS          运行内存限制:65536KByt 描述     Ivan看到好多大神仅仅用一年的时间就可以摘...

求数组中最长递增子序列 动态规划

/* *copyright@nciaebupt 转载请注明出处 *问题:求数组中最长递增子序列 *写一个时间复杂度尽可能低的程序,求一个一维数组(N个元素)中的最长递增子序列的长度。 *例如:在序列1...

[动态规划] 最长递增子序列 (Longest Increasing Subsequence)

1.复杂度为O(n^2) const int maxn=100020; const int inf=0x3f3f3f3f; int dp[maxn];//以a[i]为结尾的最长自增子序列长度 int...

动态规划-最长递增子序列

动态规划:动态规划是一种思想。是由暴力递归简化而来的编程思想,在编程中变化很大。我的总结如下: 1.    最长递增子序列 我们想要找到最长递增子序列,关键要遍历数组。 问题:遍历数组,更新当前...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:最长递增子序列 动态规划 java代码
举报原因:
原因补充:

(最多只允许输入30个字)