R的神经网络包

原创 2016年08月28日 21:38:13

R语言有许多神经网络包的package.如nnet,AMORE,neuralnet

nnet是前馈反向传播神经网络算法,而AMORE包则更进一步提供了更为丰富的控制参数,并增加多个隐藏层,neuralnet的改进提供了弹性反向传播算法。

R的自然语言处理包

emu,wordnet,KEA,openNLP,RWeka,Snowball,Rstem,tm,lsa,

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

R语言利用nnet包训练神经网络模型

说明R语言提供了另外一个能够处理人工神经网络的算法包nnet,该算法提供了传统的前馈反向传播神经网络算法的实现。

Neuralnet包R与神经网络

本篇博客将会介绍R中的一个神经网络算法包:Neuralnet,通过模拟一组数据,展现其在R中是如何使用,以及如何训练和预测。在介绍Neuranet之前,我们先简单介绍一下 神经网络算法 。 人工...

R语言利用neuralnet包训练神经网络

说明神经网络由一组互联的结点组成,这些节点分别负责网络的输入,连接,处理以及输出。神经网络被广泛用于诸如分类、聚类、预测等诸多领域。借助neuralnet训练得到神经网络模型。

ANN神经网络模型的置信区间的预估-R包nnetpredint应用(一)

本文介绍了如何对ANN模型预测值给出一个置信区间的估计。 ANN神经网络模型的参数 m 层神经网络模型,每层节点数 sk(k=0,1,2,..,m), s0 为输入向量的维度; ok : 第k层输入...

【R的机器学习】模型性能提升探索:R的其他神经网络包-neuralnet

上一节简单说明了神经网络,这里对R中进行神经网络算法的其他函数做下具体说明。之前说到RSNNS包的神经网络,但是这个函数比较复杂,这里介绍下neuralnet包的神经网络。这个包中的神经网络建模有个缺...

利用R实现简单的BP神经网络

BP神经网络学习 参考此篇视频数据挖掘:理论与算法 利用R来进行模拟参考以下这两篇文章使用R学习一个简单的神经网络和使用neuralant包拟合一个神经网络 1.设置R的工作空间;读取原始数据>...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)