缺失值插补方法

转载 2016年08月30日 09:22:47

个案剔除法

最常见、最简单的处理缺失数据的方法是个案剔除法,也是很多统计软件(诸如如SPSS和SAS)默认的缺失值处理方法。
在这种方法中如果任何一个变量含有缺失数据的话,就把相对应的个案从分析样本中剔除。如果缺失值所占比例比较小的话,这一方法十分有效。至于具体多大的缺失比例算是“小”比例,专家们意见也存在较大的差距。有学者认为应在5%以下,也有学者认为20%以下即可。然而,这种方法却有很大的局限性。它是以减少样本量来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。在样本量较小的情况下,删除少量对象就足以严重影响到数据的客观性和结果的正确性。因此,当缺失数据所占比例较大,特别是当缺数据非随机分布时,这种方法可能导致数据发生偏离,从而得出错误的结论。

均值、中位数或众数插补

在变量十分重要而所缺失的数据量又较为庞大的时候,个案剔除法就遇到了困难,因为许多有用的数据也同时被剔除。因此,可以采用均值、中位数或众数插补
在该方法中,我们将变量的属性分为数值型和非数值型来分别进行处理。如果缺失值是数值型的,就根据该变量在其他所有对象的取值的平均值来填充该缺失的变量值;如果缺失值是非数值型的,则根据统计学中的众数原理,用该变量在其他所有对象的取值次数最多的值来补齐该缺失的变量值。
不过,这种方法会产生有偏估计,所以并不被推崇。均值替换法也是一种简便、快速的缺失数据处理方法。使用均值替换法插补缺失数据,对该变量的均值估计不会产生影响。但这种方法是建立在完全随机缺失(MCAR)的假设之上的,而且会造成变量的方差和标准差变小。

热卡插补法

对于一个包含缺失值的变量,热卡插补法的做法是:在数据库中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。不同的问题可能会选用不同的标准来对相似进行判定。最常见的是使用相关系数矩阵来确定哪个变量(如变量Y)与缺失值所在变量(如变量X)最相关。然后把所有个案按Y的取值大小进行排序。那么变量X的缺失值就可以用排在缺失值前的那个个案的数据来代替了。
与均值、中位数或众数插补相比,利用热卡插补法插补数据后,其变量的标准差与插补前比较接近。但在回归方程中,使用热卡插补法容易使得回归方程的误差增大,参数估计变得不稳定,而且这种方法使用不便,比较耗时。

回归插补法

回归插补法首先需要选择若干个预测缺失值的自变量,然后建立回归方程估计缺失值,即用缺失数据的条件期望值对缺失值进行替换。
与前述几种插补方法比较,该方法利用了数据库中尽量多的信息,而且一些统计软件(如Stata)也已经能够直接执行该功能。但该方法也有诸多弊端,第一,这虽然是一个无偏估计,但是却容易忽视随机误差,低估标准差和其他未知性质的测量值,而且这一问题会随着缺失信息的增多而变得更加严重。第二,研究者必须假设存在缺失值所在的变量与其他变量存在线性关系,很多时候这种关系是不存在的。

多重插补

多重估算是由Rubin等人于1987年建立起来的一种数据扩充和统计分析方法,作为简单估算的改进产物。首先,多重估算技术用一系列可能的值来替换每一个缺失值,以反映被替换的缺失数据的不确定性。然后,用标准的统计分析过程对多次替换后产生的若干个数据集进行分析。最后,把来自于各个数据集的统计结果进行综合,得到总体参数的估计值。
由于多重估算技术并不是用单一的值来替换缺失值,而是试图产生缺失值的一个随机样本,这种方法反映出了由于数据缺失而导致的不确定性,能够产生更加有效的统计推断。结合这种方法,研究者可以比较容易地,在不舍弃任何数据的情况下对缺失数据的未知性质进行推断。

相关文章推荐

几种常见的缺失数据插补方法

原文地址:几种常见的缺失数据插补方法作者:spss15.0(一)个案剔除法(Listwise Deletion)   最常见、最简单的处理缺失数据的方法是用个案剔除法(listwise deleti...

数据预处理之缺失值插补 — 基于R语言

本文结构:前言——数据介绍——检查缺失值分布——缺失值插补(4种方法)——总结前言:现实生活中的数据是纷繁杂乱的,收集来的数据有缺失和录入错误司空见惯,所以学习如果处理这些常见问题是每一个数据人必须掌...

R语言︱缺失值处理之多重插补——mice包

笔者寄语:缺失值是数据清洗过程中非常重要的问题(其他方法可见:R语言︱异常值检验、离群点分析、异常值处理),笔者在进行mice包的多重插补过程中遇到相当多的问题。 大致的步骤简介如下: 缺失...

missForest一种非参数的缺失值填补方法

介绍对于处理现实中的数据时,我们常常会遇到缺失值,这里我们将介绍一种缺失值的填补方法missForest,这是利用随机森林来填补缺失值的非参数方法,他可以适用于任何类型的数据(连续、离散)。其他类似的...

数据缺失值的4种处理方法

转载自:http://www.itongji.cn/article/100311B2012.html 一、缺失值产生的原因 缺失值的产生的原因多种多样,主要分为机械原因和人为原...

缺失值处理方法

一、缺失值产生的原因 缺失值的产生的原因多种多样,主要分为机械原因和人为原因。机械原因是由于机械原因导致的数据收集或保存的失败造成的数据缺失,比如数据存储的失败,存储器损坏,机械故障导致某段时间...

数据分析中缺失值的处理方法

对于缺失值的处理,从总体上来说分为删除存在缺失值的个案和缺失值插补。对于主观数据,人将影响数据的真实性,存在缺失值的样本的其他属性的真实值不能保证,那么依赖于这些属性值的插补也是不可靠的,所以对于主观...

连续值、缺失值 、正负样本不均衡处理方法

数据挖掘笔试总结: 1.连续值、缺失值 、正负样本不均衡处理方法 缺失值:    (1)删除含有缺失值的数据对象或属性    (2)估计遗漏值,差值补全。      a.均值插补  均值 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:缺失值插补方法
举报原因:
原因补充:

(最多只允许输入30个字)