关闭

康托展开和康托逆展开

标签: 算法
240人阅读 评论(0) 收藏 举报
分类:

康托展开

X=a[n](n-1)!+a[n-1](n-2)!+…+a[i]*(i-1)!+…+a[1]*0!
其中,a[i]为整数,并且X=a[n](n-1)!+a[n-1](n-2)!+…+a[i]*(i-1)!+…+a[1]*0!。这就是康托展开。

举个例子

1324是{1,2,3,4}排列数中第几个大的数:第一位是1小于1的数没有,是0个,0*3!,第二位是3小于3的数有1和2,但1已经在第一位了,所以只有一个数2,1*2! 。第三位是2小于2的数是1,但1在第一位,所以有0个数,0*1!,所以比1324小的排列有0*3!+1*2!+0*1!=2个,1324是第三个大数。

//获取阶层
void getKt(){
    fac[0] = 1;
    for (int i = 1; i < 12; i++){
        fac[i] = i*fac[i-1];
    }
}
//s为一个数组,n为数组的长度
int Kt(int s[],int n){
    int sum, i, j, cnt;
    sum = 0;
    for (i = 0; i < n; i++){
        cnt = 0;
        for (j = i + 1; j < n; j++){
            if (s[j]<s[i]) cnt++;
        }
        sum += cnt*fac[n-i-1];
    }
    return sum;
}

康托展开的逆运算

  例 {1,2,3,4,5}的全排列,并且已经从小到大排序完毕

  (1)找出第96个数

  首先用96-1得到95

  用95去除4! 得到3余23

  用23去除3! 得到3余5

  用5去除2!得到2余1

  用1去除1!得到1余0有3个数比它小的数是4

  所以第一位是4

  有3个数比它小的数是4但4已经在之前出现过了所以是5(因为4在之前出现过了所以实际比5小的数是3个)

  有2个数比它小的数是3

  有1个数比它小的数是2

  最后一个数只能是1

  所以这个数是45321

  (2)找出第16个数

  首先用16-1得到15

  用15去除4!得到0余15

  用15去除3!得到2余3

  用3去除2!得到1余1

  用1去除1!得到1余0

  有0个数比它小的数是1

  有2个数比它小的数是3 但由于1已经在之前出现过了所以是4(因为1在之前出现过了所以实际比4小的数是2)

  有1个数比它小的数是2 但由于1已经在之前出现过了所以是3(因为1在之前出现过了所以实际比3小的数是1)

  有1个数比它小得数是2 但由于1,3,4已经在之前出现过了所以是5(因为1,3,4在之前出现过了所以实际比5小的数是1)

  最后一个数只能是2

  所以这个数是14352
  

int des[12];    //标记是否在数组中存在
int* ReKt(int s,int n){
    //初始化
    memset(des, false, sizeof(des));
    int temp,i,j;
    int *b = new int[n];

    s -= 1;

    for (i = 0; i < n; i++){
        temp = s/fac[n - i - 1];
        for (j = 1; j <= n; j++){
            if (des[j]!=false){
                continue;
            }
            if (temp == 0) break;
            temp--;

        }
        b[i] = j;
        des[j] = true;
        s = s % fac[n - i - 1];
    }

    return b;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:19255次
    • 积分:995
    • 等级:
    • 排名:千里之外
    • 原创:79篇
    • 转载:24篇
    • 译文:0篇
    • 评论:2条
    github地址
    https://github.com/lkj41110
    最新评论