动态规划总结

原创 2016年05月31日 21:50:42

1.动态规划是什么:

动态规划是解决多阶段决策问题的一种方法。

2.动态规划的思想是:

在做每一步决策时,列出各种可能的局部解
依据某种判定条件,舍弃那些肯定不能得到最优解的局部解。
以每一步都是最优的来保证全局是最优的。

3.动态规划问题的一般解题步骤:

判断问题是否具有最优子结构性质,若不具备则不能用动态规划。

把问题分成若干个子问题(分阶段)。
建立状态转移方程(递推公式)。
找出边界条件。
将已知边界值带入方程。
递推求解

4.动态规划(01背包)

题目: 有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
基本思路: 这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放

f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是: f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

5。动态规划(区间dp)

题目:有一根长度为L的木棍,木棍上面有M个切割点,每一次切割都要付出当前木棍长度的代价,问怎样切割有最小代价
分析: 区间动态规划问题一般都是考虑,对于每段区间,他们的最优值都是由几段更小区间的最优值得到。将一个区间问题不断划分为更小的区间直至一个元素组成的区间,枚举他们的组合,求合并后的最优值。设F[i,j](1<=i<=j<=n)表示区间[i,j]内的数字相加的最小代价 , 最小区间F[i,i]=0(一个数字无法合并,∴代价为0)每次用变量k(i<=k<=j-1)将区间分为[i,k]和[k+1,j]两段


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

acm动态规划总结

  • 2013-11-29 17:56
  • 538KB
  • 下载

NOIP算法总结——关于简单 线性动态规划

动态规划,显然是一个很让人头疼的地方,也没有个固定的算法,最多就是有一些模板(比如背包啊),要是想要增大做出来的机率,也就只好多做做题找找感觉了~线性动态规划可以说是DP中最简单的类型了,当然里面很多...

acm动态规划总结

  • 2012-03-05 21:21
  • 388KB
  • 下载

整数划分总结(动态规划)

先引入一个比较实际的问题:分苹果 题目 M个相同苹果放到N个相同篮子里有多少种放法,允许有篮子不放。 1<=M<=10,1<=Nm:必定有n-m个盘子永远空着,去掉它们对摆放苹果...

动态规划总结-by Amber.doc

  • 2007-09-05 18:39
  • 94KB
  • 下载

动态规划总结与思考

这是一篇关于动态规划的思考文章,主要讲了我对动态规划的一些思考与总结。
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)