关闭

海盗问题和汉诺塔问题的分析

标签: 递归汉诺塔海盗问题
318人阅读 评论(0) 收藏 举报
分类:
海盗分金币问题:有100个金币和5名海盗,现在由5号海盗先分金币,假如它提出的方案有超过一半的海盗反对,就会被杀掉,换第4号海盗分,直到1号海盗为止。问5号海盗应该如何分配金币才能使自己利益最大化。(假设每个海盗都是理性的)

答案:给3号和1号海盗各分一枚金币,自己分99枚。

分析:我们反向分析,如果只有两名海盗1号和2号,那么由2号分金币的话1号1枚金币都得不到。所以3号只需要分给1号1枚金币就行了;同理2号海盗知道如果4号海盗死了自己将1枚金币都得不到,所以四号海盗只需分给2号海盗1枚金币就行了;同理5号海盗只需分给1号和3号海盗各1枚自己分98枚就行了。


汉诺塔问题:
整个过程分为三步:1.将上面n-1个盘子从左盘借助右盘移到中盘2.将第n个盘子从左盘直接移到右盘3.将n-1个盘子从中盘借助左盘移到右盘。
那么第一步和第三步又是递归的问题。
分析时间复杂度,递归的时间复杂度为2^n-1.
分析如下:设f(n)(n为盘子的个数)为要移动的次数。
f(1)=1;
f(n) = 2f(n-1)+1;//第一步和第三步的移动次数是一样的,再加上第二步可得
将上式求递推式:f(n)+1 = 2{f(n-1)+1}
可以知道f(n)+1是等比数列,公比为2,首项为2,那么写出通项f(n)+1 = 2^n
f(n) = 2^n - 1

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:62081次
    • 积分:1598
    • 等级:
    • 排名:千里之外
    • 原创:95篇
    • 转载:4篇
    • 译文:0篇
    • 评论:3条