关闭

51nod-1737 配对

195人阅读 评论(0) 收藏 举报
分类:

原题连接

基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
 收藏
 关注
给出一棵n个点的树,将这n个点两两配对,求所有可行的方案中配对两点间的距离的总和最大为多少。
Input
一个数n(1<=n<=100,000,n保证为偶数)
接下来n-1行每行三个数x,y,z表示有一条长度为z的边连接x和y(0<=z<=1,000,000,000)
Output
一个数表示答案
Input示例
6
1 2 1
1 3 1
1 4 1
3 5 1
4 6 1
Output示例
7
//配对方案为(1,2)(3,4)(5,6)
对于每条边求出它被用的次数m,删除这条边,把树分为两个连通块,m = 两个连通块的最小值

#include <bits/stdc++.h>
#define maxn 100005
using namespace std;
typedef long long ll;

struct Edge{
	Edge(){
	}
	Edge(int a, int b, int c){
		from = a;
	    to = b;
	    d = c;
	}
	int from, to, d;
};
vector<Edge> v[maxn];
int p[maxn], n;
ll ans;
void dfs(int j, int f){
      p[j] = 1;
	  for(int i = 0; i < v[j].size(); i++){
	  	 Edge a = v[j][i];
	  	 if(a.to != f){
	  	 	dfs(a.to, j);
	  	 	p[j] += p[a.to];
	  	 }
	  } 
}
void Dfs(int j, int f){
	for(int i = 0; i < v[j].size(); i++){
		Edge a = v[j][i];
		if(a.to != f){
			ans += min(n-p[a.to], p[a.to]) * (ll)a.d;
			Dfs(a.to, j);
		}
	}
}
int main(){
	
//	freopen("in.txt", "r", stdin);
	int a, b, c;
	scanf("%d", &n);
	for(int i = 0; i < n-1; i++){
		scanf("%d%d%d", &a, &b, &c);
		v[a].push_back(Edge(a, b, c));
		v[b].push_back(Edge(b, a, c));
	}
	dfs(1, -1);
	Dfs(1, -1);
	cout << ans << endl;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:62488次
    • 积分:4889
    • 等级:
    • 排名:第6224名
    • 原创:442篇
    • 转载:36篇
    • 译文:0篇
    • 评论:9条
    最新评论