关闭

Robust principal component analysis?(RPCA简单理解)

275人阅读 评论(0) 收藏 举报
分类:

参考文献:Candès, E.J., Li, X., Ma, Y., and Wright, J.: ‘Robust principal component analysis?’, J. ACM, 2011, 58, (3), pp. 11

作者主页有很多关于low-rank的代码:http://perception.csl.illinois.edu/matrix-rank/sample_code.html

主要算法公式如下:

clip_image002

clip_image004

clip_image006

clip_image008

关于这个低秩分解的代码,其实相当简单:

例如:公式(5-2)对应的代码为:

S = wthresh(M-L+Y/miu,'s',lambda/miu);

公式(5-3)对应的代码:

% ---- update L --- % 
[U,D,V] = svd(M-S+Y/miu,'econ'); 
D1 = wthresh(D,'s',1/miu);    
L = U*D1*V';

我自己根据公式编写的代码如下:

复制代码
% 求解 argmin rank(L) + ||S||_1  s.t. M = L+S
% Reference: Wright, J., Ganesh, A., Rao, S., Peng, Y. and Ma, Y. (2009) 
% Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. 
% In: Proceedings of Advances in neural information processing systems. 2080-2088.
L = zeros(size(M));
S = L;
Y = L;
norm_two = lansvd(M, 1, 'L'); % computes the K largest singular values.
miu = 1.25/norm_two;
% miu = 0.1;
max_miu = 1e7;
lambda = 0.005;
rho = 1.5;
max_iter = 200;
for iter = 1:max_iter
    % --- update S ----%
    S = wthresh(M-L+Y/miu,'s',lambda/miu);
    % ---- update L --- %
    [U,D,V] = svd(M-S+Y/miu,'econ');
    D1 = wthresh(D,'s',1/miu);    
    L = U*D1*V';
    Y = Y+miu*(M-L-S);
    miu = min(max_miu,rho*miu);
    obj(iter) = norm(M-L-S,'fro')^2;
    if iter > 2 && abs(obj(iter) - obj(iter-1)) < 1e-7
        break;
    end
end
figure;
imshow(reshape(L(:,80),50,40),[]);  title('低秩部分');

figure;
imshow(reshape(S(:,80),50,40),[]); title('稀疏部分');
figure;
imshow(reshape(M(:,80),50,40),[]); title('原始图像');
复制代码

对于AR数据库,我们对遮挡脸进行了试验,结果如下:

image

而同时,我们调用作者主页编写的权威代码得到的结果为:(这里原始文章的代码下载地址为:链接: http://pan.baidu.com/s/1i5m4QrV 密码: fduh)

image

 

这里我们小小总结下调这篇文章算法参数的心得:

1、lambda值越大时,对于lambda约束的矩阵,其值就越小,几乎为0,矩阵越稀疏,甚至与稀疏到0~~;相反的,另外的那个矩阵则占据主导位置。

     所以,在作者原始代码中,lambda=1/sqrt(m), m为图像特征维数。经验:lambda常可取值[0.001,0.01];

2、关于miu这个值,作者用的是miu=1.25/S_L, S_L表示原始矩阵M的最大特征值。miu一般可取0.15等

3、总感觉尽管低秩矩阵可以去掉遮挡,但是是以丢失细节特征为代价。

4、一般而言,遮挡矩阵M中,若全为遮挡脸,那么恢复效果一般比较差,而当存在一些未遮挡脸时,恢复效果会比较好!!


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:65372次
    • 积分:1031
    • 等级:
    • 排名:千里之外
    • 原创:29篇
    • 转载:58篇
    • 译文:0篇
    • 评论:9条
    文章分类
    最新评论