关闭

图像细化

272人阅读 评论(0) 收藏 举报
分类:

 在我们进行图像处理的时候,有可能需要对图像进行细化,提取出图像的骨架信息,进行更加有效的分析。

     图像细化(Image Thinning),一般指二值图像的骨架化(Image Skeletonization) 的一种操作运算。

     所谓的细化就是经过一层层的剥离,从原来的图中去掉一些点,但仍要保持原来的形状,直到得到图像的骨架。骨架,可以理解为图象的中轴。

     好的细化算法一定要满足:
  • 收敛性;
  • 保证细化后细线的连通性;
  • 保持原图的基本形状;
  • 减少笔画相交处的畸变;
  • 细化结果是原图像的中心线;
  • 细化的快速性和迭代次数少;

    这里,我们对“Zhang并行快速细化算法”进行了实现(注意,该算法为并行算法,而我们在实现过程中并没有并行化处理,所以,效率并没有达到最好)。

    参考资料

  • 细化算法
  • 论文 A fast parallel algorithm for thinning digital patterns
    [cpp] view plain copy
     在CODE上查看代码片派生到我的代码片
    1. #include <opencv2/opencv.hpp>  
    2. #include <opencv2/core/core.hpp>  
    3. #include <iostream>  
    4. #include <vector>  
    5.   
    6.   
    7. /** 
    8.  * @brief 对输入图像进行细化 
    9.  * @param src为输入图像,用cvThreshold函数处理过的8位灰度图像格式,元素中只有0与1,1代表有元素,0代表为空白 
    10.  * @param maxIterations限制迭代次数,如果不进行限制,默认为-1,代表不限制迭代次数,直到获得最终结果 
    11.  * @return 为对src细化后的输出图像,格式与src格式相同,元素中只有0与1,1代表有元素,0代表为空白 
    12.  */  
    13. cv::Mat thinImage(const cv::Mat & src, const int maxIterations = -1)  
    14. {  
    15.     assert(src.type() == CV_8UC1);  
    16.     cv::Mat dst;  
    17.     int width  = src.cols;  
    18.     int height = src.rows;  
    19.     src.copyTo(dst);  
    20.     int count = 0;  //记录迭代次数  
    21.     while (true)  
    22.     {  
    23.         count++;  
    24.         if (maxIterations != -1 && count > maxIterations) //限制次数并且迭代次数到达  
    25.             break;  
    26.         std::vector<uchar *> mFlag; //用于标记需要删除的点  
    27.         //对点标记  
    28.         for (int i = 0; i < height ;++i)  
    29.         {  
    30.             uchar * p = dst.ptr<uchar>(i);  
    31.             for (int j = 0; j < width; ++j)  
    32.             {  
    33.                 //如果满足四个条件,进行标记  
    34.                 //  p9 p2 p3  
    35.                 //  p8 p1 p4  
    36.                 //  p7 p6 p5  
    37.                 uchar p1 = p[j];  
    38.                 if (p1 != 1) continue;  
    39.                 uchar p4 = (j == width - 1) ? 0 : *(p + j + 1);  
    40.                 uchar p8 = (j == 0) ? 0 : *(p + j - 1);  
    41.                 uchar p2 = (i == 0) ? 0 : *(p - dst.step + j);  
    42.                 uchar p3 = (i == 0 || j == width - 1) ? 0 : *(p - dst.step + j + 1);  
    43.                 uchar p9 = (i == 0 || j == 0) ? 0 : *(p - dst.step + j - 1);  
    44.                 uchar p6 = (i == height - 1) ? 0 : *(p + dst.step + j);  
    45.                 uchar p5 = (i == height - 1 || j == width - 1) ? 0 : *(p + dst.step + j + 1);  
    46.                 uchar p7 = (i == height - 1 || j == 0) ? 0 : *(p + dst.step + j - 1);  
    47.                 if ((p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) >= 2 && (p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) <= 6)  
    48.                 {  
    49.                     int ap = 0;  
    50.                     if (p2 == 0 && p3 == 1) ++ap;  
    51.                     if (p3 == 0 && p4 == 1) ++ap;  
    52.                     if (p4 == 0 && p5 == 1) ++ap;  
    53.                     if (p5 == 0 && p6 == 1) ++ap;  
    54.                     if (p6 == 0 && p7 == 1) ++ap;  
    55.                     if (p7 == 0 && p8 == 1) ++ap;  
    56.                     if (p8 == 0 && p9 == 1) ++ap;  
    57.                     if (p9 == 0 && p2 == 1) ++ap;  
    58.   
    59.                     if (ap == 1 && p2 * p4 * p6 == 0 && p4 * p6 * p8 == 0)  
    60.                     {  
    61.                         //标记  
    62.                         mFlag.push_back(p+j);  
    63.                     }  
    64.                 }  
    65.             }  
    66.         }  
    67.   
    68.         //将标记的点删除  
    69.         for (std::vector<uchar *>::iterator i = mFlag.begin(); i != mFlag.end(); ++i)  
    70.         {  
    71.             **i = 0;  
    72.         }  
    73.   
    74.         //直到没有点满足,算法结束  
    75.         if (mFlag.empty())  
    76.         {  
    77.             break;  
    78.         }  
    79.         else  
    80.         {  
    81.             mFlag.clear();//将mFlag清空  
    82.         }  
    83.   
    84.         //对点标记  
    85.         for (int i = 0; i < height; ++i)  
    86.         {  
    87.             uchar * p = dst.ptr<uchar>(i);  
    88.             for (int j = 0; j < width; ++j)  
    89.             {  
    90.                 //如果满足四个条件,进行标记  
    91.                 //  p9 p2 p3  
    92.                 //  p8 p1 p4  
    93.                 //  p7 p6 p5  
    94.                 uchar p1 = p[j];  
    95.                 if (p1 != 1) continue;  
    96.                 uchar p4 = (j == width - 1) ? 0 : *(p + j + 1);  
    97.                 uchar p8 = (j == 0) ? 0 : *(p + j - 1);  
    98.                 uchar p2 = (i == 0) ? 0 : *(p - dst.step + j);  
    99.                 uchar p3 = (i == 0 || j == width - 1) ? 0 : *(p - dst.step + j + 1);  
    100.                 uchar p9 = (i == 0 || j == 0) ? 0 : *(p - dst.step + j - 1);  
    101.                 uchar p6 = (i == height - 1) ? 0 : *(p + dst.step + j);  
    102.                 uchar p5 = (i == height - 1 || j == width - 1) ? 0 : *(p + dst.step + j + 1);  
    103.                 uchar p7 = (i == height - 1 || j == 0) ? 0 : *(p + dst.step + j - 1);  
    104.   
    105.                 if ((p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) >= 2 && (p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) <= 6)  
    106.                 {  
    107.                     int ap = 0;  
    108.                     if (p2 == 0 && p3 == 1) ++ap;  
    109.                     if (p3 == 0 && p4 == 1) ++ap;  
    110.                     if (p4 == 0 && p5 == 1) ++ap;  
    111.                     if (p5 == 0 && p6 == 1) ++ap;  
    112.                     if (p6 == 0 && p7 == 1) ++ap;  
    113.                     if (p7 == 0 && p8 == 1) ++ap;  
    114.                     if (p8 == 0 && p9 == 1) ++ap;  
    115.                     if (p9 == 0 && p2 == 1) ++ap;  
    116.   
    117.                     if (ap == 1 && p2 * p4 * p8 == 0 && p2 * p6 * p8 == 0)  
    118.                     {  
    119.                         //标记  
    120.                         mFlag.push_back(p+j);  
    121.                     }  
    122.                 }  
    123.             }  
    124.         }  
    125.   
    126.         //将标记的点删除  
    127.         for (std::vector<uchar *>::iterator i = mFlag.begin(); i != mFlag.end(); ++i)  
    128.         {  
    129.             **i = 0;  
    130.         }  
    131.   
    132.         //直到没有点满足,算法结束  
    133.         if (mFlag.empty())  
    134.         {  
    135.             break;  
    136.         }  
    137.         else  
    138.         {  
    139.             mFlag.clear();//将mFlag清空  
    140.         }  
    141.     }  
    142.     return dst;  
    143. }  
    144.   
    145.   
    146. int main(int argc, char*argv[])  
    147. {  
    148.     //获取图像  
    149.     if (argc != 2)  
    150.     {  
    151.         std::cout << "参数个数错误!" << std::endl;  
    152.         return -1;  
    153.     }  
    154.     cv::Mat src = cv::imread(argv[1], cv::IMREAD_GRAYSCALE);  
    155.     if (src.empty())  
    156.     {  
    157.         std::cout << "读取文件失败!" << std::endl;  
    158.         return -1;  
    159.     }  
    160.   
    161.     //将原图像转换为二值图像  
    162.     cv::threshold(src, src, 128, 1, cv::THRESH_BINARY);  
    163.     //图像细化  
    164.     cv::Mat dst = thinImage(src);  
    165.     //显示图像  
    166.     dst = dst * 255;  
    167.     cv::namedWindow("src1", CV_WINDOW_AUTOSIZE);  
    168.     cv::namedWindow("dst1", CV_WINDOW_AUTOSIZE);  
    169.     cv::imshow("src1", src);  
    170.     cv::imshow("dst1", dst);  
    171.     cv::waitKey(0);  
    172. }  

    运行效果

    1原图像


    2.运行效果



  • 0
    0
    查看评论

    opencv实现二值图像细化的算法

    opencv 图像细化
    • byxdaz
    • byxdaz
    • 2010-06-02 16:40
    • 23397

    opencv实现图像细化效果

    在图像处理中,有时候我们会想要提取图像的骨架,这是就需要对图像进行细化,opencv中没有直接进行细化的算法,网上大部分的细化算法都是基于以前IplImage结构的,对于想要使用新的C++接口的Mat结构需要进行一定的修改,本文的细化方法是基于Mat数据结构的,使用的是OpenCV2.4.9版本。 ...
    • sjhuangx
    • sjhuangx
    • 2015-11-14 16:21
    • 1805

    图像细化matlab代码实现

    ==================================================================== One.m 该程序实现了细化,应用的是matlab子带的函数,注意“a=~a”,非常关键,我调试了一个下午发现,如果不是白字黑底,则情况很糟糕。 程序中,b...
    • superdont
    • superdont
    • 2009-09-30 16:21
    • 11851

    图象细化算法大全

    #include "StdAfx.h"#include #include void beforethin(unsigned char *ip, unsigned char *jp, ...
    • byxdaz
    • byxdaz
    • 2006-02-27 09:17
    • 13249

    二值图像快速细化算法

    二值图像的细化是讨论将一个图像中的黑色部分沿着它的中心轴线将其细化为一个像素宽的线条的处理过程,细化的结果能基本保留图形中黑色部分的拓扑结构。图像细化是图像模式识别的关键步骤。快速细化算法的思想是优化了原细化算法中由边界逐层消除黑色像素点的过程,提高细化效率。     ...
    • klose93
    • klose93
    • 2017-01-15 20:49
    • 1900

    【opencv】图像细化

    在我们进行图像处理的时候,有可能需要对图像进行细化,提取出图像的骨架信息,进行更加有效的分析。      图像细化(Image Thinning),一般指二值图像的骨架化(Image Skeletonization) 的一种操作运算。   ...
    • qianchenglenger
    • qianchenglenger
    • 2014-02-17 21:03
    • 20878

    图像处理___细化

    From:  http://www.dakaren.com/index.php/archives/199.htm 二、细化   图像处理中物体的形状信息是十分重要的,为了便于描述和抽取图像特定区域的特征,对那些表示物体的区域通常需要采用细化算法处理,得到与原来物体区域形状近...
    • Vast_Sea
    • Vast_Sea
    • 2012-11-17 09:37
    • 4792

    快速图像细化算法

    原文地址:http://blog.csdn.net/qianchenglenger/article/details/19332011 在我们进行图像处理的时候,有可能需要对图像进行细化,提取出图像的骨架信息,进行更加有效的分析。      图像细化(I...
    • roslei
    • roslei
    • 2016-08-17 16:47
    • 2051

    opencv学习_8 ( 图像细化)

    图像细化——针对的是二值图像 或者用阀值处理的二值图像 (1):例子 左边为输入图像 右边为细化的效果图 (2)思想: 公式: y = p0*2^0 + p1*2^1+ p2*2^2 + p3*2^3 + p4*2^4 + p5*2^5 + p6*2^6 +p7*2^7  ...
    • Lu597203933
    • Lu597203933
    • 2013-11-06 21:08
    • 12203

    OpenCV实现二值图像细化的算法

    细化算法通常和骨骼化、骨架化算法是相同的意思,也就是thin算法或者skeleton算法。虽然很多图像处理的教材上不是这么写的,具体原因可以看这篇论文,Louisa Lam, Seong-Whan Lee, Ching Y. Suen,“Thinning Methodologies-A Compre...
    • cp32212116
    • cp32212116
    • 2015-03-12 21:14
    • 1224
      个人资料
      • 访问:98725次
      • 积分:1405
      • 等级:
      • 排名:千里之外
      • 原创:29篇
      • 转载:77篇
      • 译文:0篇
      • 评论:14条
      文章分类
      最新评论