关闭

CodeForces 659G Fence Divercity (DP)

140人阅读 评论(0) 收藏 举报
分类:

解析:设dp[i][j]为考虑前i个Fence,cut的部分包含第i个Fence,第i个Fence处理后的高度为j的方案数。

则首先 1<=j<h[i]

如果j<h[i-1],dp[i][j] = 1+sigma(dp[i-1][k]),  1<=k<=min(h[i-1]-1,h[i]-1);

反之,dp[i][j] = 1;

得到转移方程后显然不能直接用,因为空间和时间都特别大,但是我们注意到,对于每一个i,我们只需要维护3个前缀和就可以完成方程的转移。

设s[i][j] = dp[i][1]+dp[i][2]+...+dp[i][j],

这样一来,需要维护的j 的值有三个,min(h[i-1]-1,h[i]-1),h[i],min(h[i]-1,h[i+1]-1);

[code]:

#include<cstdio>
#include<cstring>
#include<algorithm>

using namespace std;
typedef long long LL;
const LL MOD = 1e9+7;
const int maxn = 1e6+6;

int n,h[maxn];
LL dp[maxn][3];

int main(){
    int i,j;
    scanf("%d",&n);
    for(i = 1;i <= n;i++) scanf("%d",&h[i]);
    int a,b,c;
    h[0] = 1;h[n+1] = 1;
    for(i = 1;i <= n;i++){
        a = min(h[i-1]-1,h[i]-1);
        b = h[i];
        c = min(h[i]-1,h[i+1]-1);
//printf("%d %d %d %d\n",i,a,b,c);
        dp[i][0] = (a*dp[i-1][2]+a)%MOD;
        dp[i][1] = (dp[i][0]+b-a)%MOD;
        if(c <= a) dp[i][2] = (c*dp[i-1][2]+c)%MOD;
        else dp[i][2] = (dp[i][0]+c-a)%MOD;
//printf("--> 0 : %I64d | 1 : %I64d | 2 : %I64d\n",dp[i][0],dp[i][1],dp[i][2]);
    }
    LL res = 0;
    for(i = 1;i <= n;i++){
        res = (res+dp[i][1]-1)%MOD;
    }
    res = (res + MOD)%MOD;
    printf("%I64d\n",res);
    return 0;
}


 

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:34435次
    • 积分:2529
    • 等级:
    • 排名:第14552名
    • 原创:228篇
    • 转载:8篇
    • 译文:0篇
    • 评论:0条
    文章分类