关闭

Codeforces 625D Finals in arithmetic(构造)

252人阅读 评论(0) 收藏 举报
分类:

解析:k位的数字n可能是有k位的a得来也可能由k-1位的a得来。

先将n视为字符串s[1....k]

以a是k位为例,设p为进位,l,r为左右端点

起始l = 1,r = n,p = 0

若p = 0,s[l..r] = a...b 那么a[r]+a[l] = b,再将a与b做差,差值只能为0和1,如果是其他值,则不能形成,如果是0,说明a[l+1]+a[r-1] < 10,没有进位,反之就是说有进位。

若p = 1,s[l..r] = a...b 那么a[r]+a[l] = 10+b,同时把s[r-1]减一,再将a与b做差,差值只能为0和1,如果是其他值,则不能形成,如果是0,说明a[l+1]+a[r-1] < 10,没有进位,反之就是说有进位。

需要注意1 0....9这种情况,首先a[l]+a[r]=19这是不可能的,但是这种情况,进位1可能是9+1进位得来的,所以要单独讨论。


[code]:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<map>
#include<vector>
#include<queue>

#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define lowbit(i) (i&-i)
using namespace std;
typedef long long LL;
const int maxn = 1e5+5;

char s[maxn];
int n,t[maxn],a[maxn];
int b[20];

void init(){
    for(int i = 0;i < 19;i++){
        b[i] = i<10?i:(i-9);
    }
}

bool sol(int p,int l,int r){
    int i,val,bn = l;
    for(i = l;i <= r;i++) t[i] = s[i]-'0';
    while(l <= r){
        val = p*10+t[r];
        if(l == r){
            if(val%2==0){
                a[l] = val/2;
                break;
            }else return false;
        }
        if(val == 19){
            val = 9;
            t[l] += p*10;
            p = 0;
        }
        a[l] = b[val];
        a[r] = val - a[l];
        if(p){
            for(i = r-1;i >= l&&t[i] == 0;i--) t[i] = 9;
            if(i>=l) t[i]--;
            else return false;
        }
        p = t[l]-t[r];
        if(p!=0&&p!=1) return false;
        if(l+1==r&&p) return false;
        l++,r--;
    }
    return a[bn]!=0;
}

int main(){
    int i,j;
    scanf("%s",s+1);
    n = strlen(s+1);
    init();
    if(sol(0,1,n)){
        for(i = 1;i <= n;i++) printf("%d",a[i]);
    }else if(s[1]=='1'&&n>1&&sol(1,2,n)){
        for(i = 2;i <= n;i++) printf("%d",a[i]);
    }else{
        puts("0");
    }


    return 0;
}





0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:34746次
    • 积分:2531
    • 等级:
    • 排名:第14598名
    • 原创:228篇
    • 转载:8篇
    • 译文:0篇
    • 评论:0条
    文章分类