HDOJ 5253 连接的管道(最小生成树)

原创 2016年08月30日 22:04:18

连接的管道




Problem Description
老 Jack 有一片农田,以往几年都是靠天吃饭的。但是今年老天格外的不开眼,大旱。所以老 Jack 决定用管道将他的所有相邻的农田全部都串联起来,这样他就可以从远处引水过来进行灌溉了。当老 Jack 买完所有铺设在每块农田内部的管道的时候,老 Jack 遇到了新的难题,因为每一块农田的地势高度都不同,所以要想将两块农田的管道链接,老 Jack 就需要额外再购进跟这两块农田高度差相等长度的管道。

现在给出老 Jack农田的数据,你需要告诉老 Jack 在保证所有农田全部可连通灌溉的情况下,最少还需要再购进多长的管道。另外,每块农田都是方形等大的,一块农田只能跟它上下左右四块相邻的农田相连通。
 

Input
第一行输入一个数字T(T10),代表输入的样例组数

输入包含若干组测试数据,处理到文件结束。每组测试数据占若干行,第一行两个正整数 N,M(1N,M1000),代表老 Jack 有N行*M列个农田。接下来 N 行,每行 M 个数字,代表每块农田的高度,农田的高度不会超过100。数字之间用空格分隔。
 

Output
对于每组测试数据输出两行:

第一行输出:"Case #i:"。i代表第i组测试数据。

第二行输出 1 个正整数,代表老 Jack 额外最少购进管道的长度。
 

Sample Input
2 4 3 9 12 4 7 8 56 32 32 43 21 12 12 2 3 34 56 56 12 23 4
 

Sample Output
Case #1: 82 Case #2: 74
解题思路:建图 + Kruskal算法,注意连边时的处理。

代码如下:

#include <bits/stdc++.h>
const int maxn = 2005;
const int maxm = 2000005;
struct edge
{
	int from,to,dis;
};
edge edges[maxm];
int par[maxm];
int mp[maxn][maxn];
int dir[4][2] = {{0,1},{-1,0},{0,-1},{1,0}};
int n,m,e;
void init(int n)
{
	for(int i = 0;i < n;i++)
		par[i] = i;
}
int find(int x)
{
	return par[x] == x ? x : par[x] = find(par[x]);
}

void unite(int x,int y)
{
	x = find(x);
	y = find(y);
	if(x == y) return ;
	par[x] = y;
}

void add_edge(int from,int to,int dis)
{
	edges[e].from = from;
	edges[e].to = to;
	edges[e++].dis = dis;
}

bool same(int x,int y)
{
	return find(x) == find(y);
}
bool cmp(edge a,edge b)
{
	return a.dis < b.dis;
}
int Kruskal()
{
	std::sort(edges,edges + e,cmp);
	int res = 0;
	for(int i = 0;i < e;i++){
		edge eg = edges[i];
		if(same(eg.from,eg.to)) continue;
		unite(eg.from,eg.to);
		res += eg.dis;
	}
	return res;
}
int main()
{
	int t,ncase = 0;;
	scanf("%d",&t);
	while(t--){
		e = 0;
		scanf("%d %d",&n,&m);
		init(n * m);
		for(int i = 0;i < n;i++)
			for(int j = 0;j < m;j++)
				scanf("%d",&mp[i][j]);
		for(int i = 0;i < n;i++){
			for(int j = 0;j < m;j++){
				if(i != n - 1)
					add_edge(i * m + j,(i + 1) * m + j,abs(mp[i][j] - mp[i + 1][j]));
				if(j != m - 1)
					add_edge(i * m + j,i * m + j + 1,abs(mp[i][j] - mp[i][j + 1]));
			}
		}
		printf("Case #%d:\n%d\n",++ncase,Kruskal());
	}
	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不可转载。

相关文章推荐

hdu 5253 连接的管道 最小生成树

题意:一个矩阵中,一个点与其上下左右均有边,边权为差值,求最小生成树。 思路:建好图,套克鲁斯卡尔。 数组大小开错,找了一个小时。跟个智障一样。 #include using namespace...

Hdu 5253 连接的管道【思维建图+最小生成树】

连接的管道 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su...

HDU 5253 连接的管道(最小生成树)

连接的管道 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su...

HDU:5253 连接的管道(最小生成树+变形处理)

连接的管道 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su...

克鲁斯卡尔 最小生成树 hud 5253

克鲁斯科尔不同于prime,两者解决相同问题,但思路有所不同,克鲁斯卡尔运用到排序和并查集。下面一道题目,由此来写出我的理解。         老 Jack 有一片农田,以往几年都是靠天吃饭的。但是...

HDU 5253 连接的管道

题目链接:连接的管道 题面: 连接的管道 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja...

HDU 5253 连接的管道

分析:题意就不说了,因为这题的高度差比较小,所以可以用并查集暴力求解,做的时候发现带参数的宏定义的效率很低,比如我用# define abs(x) (x>0?x:-(x)) 这样就超时了,写个函数就不...

杭电5253连接的管道

连接的管道 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su...
  • z8110
  • z8110
  • 2015-09-17 17:30
  • 193

HDU 5253 连接的管道

解题思路:存下每条边,然后kruskal。

2015百度之星 初赛2 连接的管道 最小生成树

题意:老 Jack 有一片农田,以往几年都是靠天吃饭的。但是今年老天格外的不开眼,大旱。所以老 Jack 决定用管道将他的所有相邻的农田全部都串联起来,这样他就可以从远处引水过来进行灌溉了。当老 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)