深度学习用于图片的分类和检测总结

转载 2015年11月19日 10:11:48

1. CNN用于分类:具体的过程大家都知道,无非是卷积,下采样,激活函数,全连接等。CNN用于分类要求它的输入图片的大小是固定的(其实不单单是CNN,很多其它的方法也是这样的),这是它的一个不足之处之一。目前的大部分CNN都是用来做分类比较多。


2. CNN用于检测:主要的方法有两种,细分一下有三种,

第一种最为简单和暴力的,通过滑动窗口的方法,提取一个固定大小的图像patch输入到CNN网络中,得到该patch的一个类别,这样得到一个图片密集的类别得分图。显然,这种方法的一个弊端就是运算量太大,如果图片的分辨率比较的大,就根本无法进行下去,更何况,这还是在没有考虑图片多尺度检测的情况。

第二种方法,在第一种方法的基础之上,采用了动态规划的思想,避免了重复计算问题。对于CNN来说,直到第一个全连接层之前,它的输入图片大小是可以不固定的,但是有了全连接层之后,就要求输入大小保持一致,第二种方法是先把任意大小的图片进行输入CNN直到第一个全连接层,然后再在它的基础上进行固定大小的滑动窗口输入到全连接层中,由于第一个全连接层之前进行了大量的下采样操作,所以这时候的滑动窗口的数目就大大的减少了,而且前面的卷积操作就要计算一次,没有重复计算的问题。CNN里面有一个trick就是把训练好了的用于分类的网络,把它的全连接层参数转化为卷积层参数。这样改造后的CNN就成了全卷积CNN,它的输入是可以任意的,而它的输出是patch 的类别得分。这个在Caffe里面有一个例子说明怎么转换。网址在这里:http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/net_surgery.ipynb

第三种方法,跟前两种不同的是,它不是采用滑动窗口的方法,而是采用提取子窗口的方法,这种方法最典型的是今年的CVPR2014的R-CNN方法,它先采用一个方法来进行生成1000-2000左右的窗口区域(类似于目标显著性检测,但又不同,英文的说法叫Objectness,不好翻译),然后再把这些窗口归一化到相同的大小放到CNN里面去做分类。(当然RCNN的方法只是用训练好了的CNN进行提特征,它还需要进行对每一个类别进行训练SVM分类器)。显然这种方法的优点的是比前两种快,因为分类的窗口少,但是它也有不足就是,它要保证要检测的目标在这些1000-2000个提取的窗口中的概率要足够的高,也就是要有比较高的召回率。再者,它要保证这1000-2000个窗口的提取要足够的快,(在R-CNN中,由于它采用的方法生成窗口很慢,所以实际上整个检测是比较慢的。)


深度学习论文笔记之(一)HED边缘检测

Abstract 创新点: 用cnn做edge detection (HED),端到端 解决两个问题: 1)holistic(整体的) image training and prediction; ...
  • yxq5997
  • yxq5997
  • 2016年12月15日 22:25
  • 4310

深度学习——图像前背景分离神经网络技术架构

背景移除是手动或半手动操作起来都很简单的任务(Photoshop,甚至PowerPoint都有这类工具),用某种虚拟“马克笔”和边缘检测就可以实现,这里有个例子 。但是,全自动抠像就很有挑战性了,而且...
  • xinzhi8
  • xinzhi8
  • 2017年09月24日 15:10
  • 135

[深度学习]怎样使尺寸大小不一样的图片变为统一的size的C++程序

/***************************************************************************************************...
  • maweifei
  • maweifei
  • 2016年10月28日 11:09
  • 2169

灰度图像形状的识别分类算法实现matlab

摘  要: 针对已经给出的图像,在分类之前,因为存在噪声和光照的不同,所以要先进行图像增强,并统一将图像转为二值图像。对图像进行边缘检测,可以很容易算出各个图像面积与周长二次方的比值关系,对图像进行直...
  • u014080185
  • u014080185
  • 2016年07月22日 20:58
  • 11604

深度学习与图像识别 图像检测

主要是看了些关于深度学习图像识别和图像检测的论文,介绍了深度学习处理图像的优势...
  • oMengLiShuiXiang1234
  • oMengLiShuiXiang1234
  • 2016年11月25日 17:08
  • 15867

图像物体分类与检测算法综述

图像物体分类与检测算法综述 转自《计算机学报》 图像物体分类与检测是计算机视觉研究中的两个重要的基本问题,也是图像分割、物体跟踪、行为分析等其他高层视觉任务的基础。 本文从物体分类与检测问题的...
  • AkashaicRecorder
  • AkashaicRecorder
  • 2017年04月01日 13:41
  • 6973

深度学习(二十)基于Overfeat的图片分类、定位、检测

本篇博文主要讲解来自2014年ICLR的经典图片分类、定位物体检测overfeat算法:《OverFeat: Integrated Recognition, Localization and Dete...
  • hjimce
  • hjimce
  • 2015年12月05日 18:01
  • 17225

图像物体分类和物体检测算法的概括

1.研究问题: 物体分类:
  • smilebluesky
  • smilebluesky
  • 2014年11月06日 23:03
  • 5956

图像分类,物体检测,语义分割,实例分割的联系和区别

图像理解包含图像分类、物体检测、物体分割、实例分割等若干具体问题。每个问题研究范畴是什么?或者每个问题中图像的处理结果是什么?整理如下。...
  • niaolianjiulin
  • niaolianjiulin
  • 2016年10月27日 18:07
  • 1894

图像物体分类与检测算法综述

  • 2016年01月08日 08:39
  • 392KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习用于图片的分类和检测总结
举报原因:
原因补充:

(最多只允许输入30个字)