深度学习指南:基于Ubuntu从头开始搭建环境

翻译 2016年06月01日 22:28:35

参考:http://geek.csdn.net/news/detail/77859

这是一篇为机器搭建深度学习研究环境的详细指南,包括驱动程序、工具和各种深度学习框架的安装指导。在64位Ubuntu 14.04的机器上使用Nvidia Titan X进行测试。

还有一些有类似目的的指南。一些内容有限,而另外一些则不是最新的。该指南基于(有些部分是复制来的):

目录

  • 基础知识
  • Nvidia驱动
  • CUDA
  • cuDNN
  • Tensorflow
  • OpenBLAS
  • 常用工具
  • Caffe
  • Theano
  • Keras
  • Torch
  • X2Go

基础知识

  • 首先,打开终端,运行以下命令确保你的操作系统是最新的
sudo apt-get update  
sudo apt-get upgrade  
sudo apt-get install build-essential  
sudo apt-get autoremove

安装git

sudo apt-get install git

Nvidia驱动

  • 查看显卡型号
lspci | grep -i nvidia
  • 到Nvidia官网查找你显卡对应的最新驱动和系统设置。你可以从此网站上下载并安装驱动,但这样做会升级到更新的驱动,并且卸载的时候会有些麻烦。此外,这么做需要你退出X服务会话,从终端进行安装,这比较麻烦。

  • 我们将使用apt-get来安装驱动。到 “Proprietary GPU Drivers” PPA中查看是否有你最新的驱动。注意,最新的驱动一定是最稳定的。你也可以安装网页上推荐的驱动版本。添加”Proprietary GPU Drivers” PPA 资源库。在写这篇文章的时候,最新版本是361.42,然而推荐版本是352:

sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update
sudo apt-get install nvidia-352
  • 重启系统
sudo shutdown -r now
  • 检查以确保安装了正确版本的NVIDIA驱动
cat /proc/driver/nvidia/version

CUDA

  • 从Nvidia上下载CUDA7.5。然后到下载目录下安装CUDA
sudo dpkg -i cuda-repo-ubuntu1404*amd64.deb
sudo apt-get update
sudo apt-get install cuda
  • 添加CUDA到环境变量
echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc
  • 检查以确保安装了正确版本的CUDA
nvcc -V
  • 重启系统
sudo shutdown -r now

检查CUDA安装(可选)

  • 在CUDA安装目录安装样例。编译它们(需要几分钟):
/usr/local/cuda/bin/cuda-install-samples-7.5.sh ~/cuda-samples
cd ~/cuda-samples/NVIDIA*Samples
make -j $(($(nproc) + 1))

注意:(-j $(($(nproc) + 1)))命令使用你机器上的核心数并行执行,所以编译会更快

  • 运行deviceQuery,确保它能检测到显卡并测试通过
bin/x86_64/linux/release/deviceQuery

cuDNN

  • cuDNN是为DNN设计的CPU加速库。它能在多种情况下帮助提升执行速度。为了下载cuDNN库,你需要到Nvidia网站https://developer.nvidia.com/cudnn上进行注册。几小时到几个工作日就能够批准。一旦注册批准,下载Linux版本的cuDNN v4。最新版本是cuDNN v5,但是不是所有的工具都支持。

  • 解压并复制文件

cd ~/Downloads/
tar xvf cudnn*.tgz
cd cuda
sudo cp */*.h /usr/local/cuda/include/
sudo cp */libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

检查

  • 你可以使用nvidia-smi 命令检查目前所有操作都正确。这应该会输出GPU的一些统计数据

Tensorflow

  • 安装v0.8版本与GPU兼容。下面的指令都来自于这里
sudo apt-get install python-pip python-dev sudo pip install --upgrade 
https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.8.0-cp27-none-linux_x86_64.whl
  • 运行一个测试程序确保Tensorflow成功安装。当你执行import命令的时候,应该不会有警告/错误。
python
>>> import tensorflow as tf
>>> exit()

OpenBLAS

  • OpenBLAS是一个线性代数库,比Atlas更快。这一步是可选的,但要注意,下面的一些步骤假定你已经安装了OpenBLAS。你需要安装gfortran来编译它。
mkdir ~/git
cd ~/git
git clone https://github.com/xianyi/OpenBLAS.git
cd OpenBLAS
make FC=gfortran -j $(($(nproc) + 1))
sudo make PREFIX=/usr/local install
  • 将路径添加到LD_LIBRARY_PATH 变量中
echo 'export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH' >> ~/.bashrc

常用工具

  • 为Scipy安装一些常用工具
sudo apt-get install -y libfreetype6-dev libpng12-dev
pip install -U matplotlib ipython[all] jupyter pandas scikit-image

Caffe

  • 下面的指令都来自于这里。第一步是安装所必须的文件
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
  • 克隆Caffe资源库
cd ~/git
git clone https://github.com/BVLC/caffe.git
cd caffe
cp Makefile.config.example Makefile.config
  • 如果你安装了cuDNN,取消Makefile中USE_CUDNN := 1 这一行的注释
sed -i 's/# USE_CUDNN := 1/USE_CUDNN := 1/' Makefile.config
  • 如果你安装了OpenBLAS,修改BLAS参数值为open
sed -i 's/BLAS := atlas/BLAS := open/' Makefile.config
  • 安装需要的文件,构建Caffe和测试,运行测试确保所有测试都通过。注意,这都需要一段时间。
sudo pip install -r python/requirements.txt
make all -j $(($(nproc) + 1))
make test -j $(($(nproc) + 1))
make runtest -j $(($(nproc) + 1))
  • 构建PyCaffe,Caffe的Python接口
make pycaffe -j $(($(nproc) + 1))
  • 将Caffe添加到环境变量中
echo 'export CAFFE_ROOT=$(pwd)' >> ~/.bashrc
echo 'export PYTHONPATH=$CAFFE_ROOT/python:$PYTHONPATH' >> ~/.bashrc
source ~/.bashrc
  • 测试确保Caffe安装成功。当执行import命令的时候应该不会有警告/错误。
ipython
>>> import caffe
>>> exit()

Theano

  • 安装所必须的文件,然后安装Theano。这些指令来自于这里
sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ python-pygments python-sphinx python-nose
sudo pip install Theano
  • 测试Theano安装。当执行import命令的时候应该不会有警告/错误。
python
>>> import theano
>>> exit()

Keras

  • Keras是围绕Theano和Tensorflow设计的一个有用的封装。默认情况下,它使用Theano作为后端。查看这里的指令以了解如何变更为Tensorflow。
sudo pip install keras

Torch

  • 下面安装Torch的指令来自于这里。安装会花一些时间
git clone https://github.com/torch/distro.git ~/git/torch --recursive
cd torch; bash install-deps;
./install.sh

X2Go

  • 如果你的深度学习机器不是主要工作机器,X2Go可以帮助你远程访问。X2Go是一个了不起的远程访问解决方案。你可以使用下面的命令在Ubuntu机器上安装X2Go服务。
sudo apt-get install software-properties-common
sudo add-apt-repository ppa:x2go/stable
sudo apt-get update
sudo apt-get install x2goserver x2goserver-xsession
  • X2Go不支持统一桌面环境(Ubuntu的默认环境)。我发现XFCE效果不错。更多支持的环境在这里
sudo apt-get update
sudo apt-get install -y xfce4 xfce4-goodies xubuntu-desktop
  • 使用下面的命令查看机器的IP
hostname -I
  • 你可以使用上面的IP在你主要使用的机器上安装一个客户端来连接到深度学习服务器上。根据你的客户端系统,这里有更多的指令。

相关文章推荐

ubuntu下搭建深度学习平台Anaconda

Anaconda+Theano

深度学习与人脸识别系列(2)__深度学习的环境搭建(ubuntu+caffe)

直接去我同学博客看吧,不想整理了:http://blog.csdn.net/xyy19920105/article/details/50401620 或者直接看我的,我的就是按照官网的方法一步一步来的...

深度学习准备之Ubuntu下装显卡驱动

装显卡驱动之step two(很多同学都是因为这步而放弃深度学习的): 这也是使用深度学习框架GPU版本的关键,无奈装了几天没装好,大部分时间都是停在这一步,只能放弃,其实这里与我的电脑显卡设置有关...

搭建linux下的深度学习开发环境

最近越来越感觉到在win下开发简直浑身难受,各种lib需要逐个下载安装不说,到现在干脆在win下跑不起来了。无奈,只能打算转战linux平台。在搭建环境过程中碰到了各种问题,因此把碰到的一些问题及其解...

深度学习工作站搭建全过程

配件最近组装了一台深度学习工作站,采购的配件列表如下: 1. CPU:英特尔(Intel)Extreme系列 酷睿六核 i7-5930K 价格:4299元 购买链接:https://item....

如何搭建一台深度学习服务器

在计算机时代的早期,一名极客的满足感很大程度上来源于能DIY一台机器。到了深度学习的时代,前面那句话仍然是对的。 缘起 在2013年,MIT科技评论将深度学习列为当年十大科技突破之首。其原因在...
  • jbddygb
  • jbddygb
  • 2016年11月25日 14:17
  • 4226

深度学习主机环境配置: Ubuntu16.04+GeForce GTX 1080+TensorFlow

http://f.dataguru.cn/thread-660774-1-1.html 发表于 2016-7-20 09:04 | 只看该作者 |倒序浏览 |阅读模式 ...
  • isuker
  • isuker
  • 2016年08月11日 17:54
  • 3228

从零开始配置深度学习环境:ubuntu16.04 cuda opencv caffe 需要的库

有一台空闲的服务器,上面有一块K40的卡,原来的系统进不去了可以拿来搞一搞。。nvidia驱动这一步好像可以跳过,因为之后安装cuda能选择是否安装驱动。 上官网NVIDIA Driver Down...
  • Yan_Joy
  • Yan_Joy
  • 2017年03月29日 11:14
  • 984

深度学习指南:基于Ubuntu从头开始搭建环境

这是一篇为机器搭建深度学习研究环境的详细指南,包括驱动程序、工具和各种深度学习框架的安装指导。在64位Ubuntu 14.04的机器上使用Nvidia Titan X进行测试。 还有一些有类似目的的...

深度学习环境搭建

 Ubuntu14.04上安装pip的方法 在Ubuntu14.04上,建议通过下面的方法安装,这是一种通用的方法,也适用于Windows,当然在Windows下 手动下载下来就行了 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习指南:基于Ubuntu从头开始搭建环境
举报原因:
原因补充:

(最多只允许输入30个字)