重新学习2.0以上OPENCV(基于MAT类型)2

转载 2017年01月03日 15:53:52

图像中像素点的遍历:

1.用模板函数at<typename>(i,j)
Mat类提供了一个at的方法用于取得图像上的点,它是一个模板函数,可以取到任何类型的图像上的点。下面我们通过一个图像处理中的实际来说明它的用法。

在实际应用中,我们很多时候需要对图像降色彩,因为256*256*256实在太多了,在图像颜色聚类或彩色直方图时,我们需要用一些代表性的颜色代替丰富的色彩空间,我们的思路是将每个通道的256种颜色用64种代替,即将原来256种颜色划分64个颜色段,每个颜色段取中间的颜色值作为代表色。

 void colorReduce(Mat& Image,int div)
 {
     for(int i=0;i<Image.rows;i++)
     {
         for(int j=0;j<Image.cols;j++)
         {
             Image.at<Vec3b>(i,j)[0]=Image.at<Vec3b>(i,j)[0]/div*div+div/2;
             Image.at<Vec3b>(i,j)[1]=Image.at<Vec3b>(i,j)[1]/div*div+div/2;
             Image.at<Vec3b>(i,j)[2]=Image.at<Vec3b>(i,j)[2]/div*div+div/2;
         }
     }
 }

1.Image.at<uchar>(i,j):取出灰度图像中i行j列的点。
2.Image.at<Vec3b>(i,j)[k]:取出彩色图像中i行j列第k通道的颜色点。其中uchar,Vec3b都是图像像素值的类型,不要对Vec3b这种类型感觉害怕,其实在core里它是通过typedef Vec<T,N>来定义的,N代表元素的个数,T代表类型。

更简单一些的方法:OpenCV定义了一个Mat的模板子类为Mat_,它重载了operator()让我们可以更方便的取图像上的点:
Mat_<uchar> im=Image;
im(i,j)=im(i,j)/div*div+div/2;

2.用指针来遍历像素点
上面的例程中可以看到,我们实际喜欢把原图传进函数内,但是在函数内我们对原图像进行了修改,而将原图作为一个结果输出,很多时候我们需要保留原图,这样我们需要一个原图的副本。

 void colorReduce(const Mat& Image,Mat& outImage,int div)
 {
     // 创建与原图像等尺寸的图像
     outImage.create(Image.size(),Image.type());
     int nr=Image.rows;
     // 将3通道转换为1通道
     int nr=Image.cols*Image.channels();
     for(int k=0;k<nr;k++)
     {
         // 每一行图像的指针
         const uchar* inData=Image.ptr<uchar>(k);
         uchar* outData=outImage.ptr<uchar>(k);
         for(int i=0;i<nr;i++)
         {
             outData[i]=inData[i]/div*div+div/2;
             //*outData++=*inData++/div*div+div/2;
         }
     }
 }

值得说明的是:程序中将三通道的数据转换为1通道,在建立在每一行数据元素之间在内存里是连续存储的,每个像素三通道像素按顺序存储。也就是一幅图像数据最开始的三个值,是最左上角的那像素的三个通道的值。

但是这种用法不能用在行与行之间,因为图像在OpenCV里的存储机制问题,行与行之间可能有空白单元。这些空白单元对图像来说是没有意思的,只是为了在某些架构上能够更有效率,比如intel MMX可以更有效的处理那种个数是4或8倍数的行。一般来说图像行与行之间往往存储是不连续的,但是有些图像可以是连续的,Mat提供了一个检测图像是否连续的函数isContinuous()。当图像连通时,我们就可以把图像完全展开,看成是一行。

 if(Image.isContinuous()&&outImage.isContinuous())
     {
         nr=1;
         nc=nc*Image.rows*Image.channels();
     }
     for(int i=0;i<nr;i++)
     {
         const uchar* inData=Image.ptr<uchar>(i);
         uchar* outData=outImage.ptr<uchar>(i);
         for(int j=0;j<nc;j++)
         {
             *outData++=*inData++/div*div+div/2;
         }
     }

用指针除了用上面的方法外,还可以用指针来索引固定位置的像素:

Image.step返回图像一行像素元素的个数(包括空白元素),Image.elemSize()返回一个图像像素的大小。

&Image.at<uchar>(i,j)=Image.data+i*Image.step+j*Image.elemSize();

3.迭代器来遍历图像
下面的方法可以让我们来为图像中的像素声明一个迭代器:

MatIterator_<Vec3b> it;

Mat_<Vec3b>::iterator it;

如果迭代器指向一个const图像,则可以用下面的声明:

MatConstIterator<Vec3b> it; 或者

Mat_<Vec3b>::const_iterator it;

下面我们用迭代器来简化上面的colorReduce程序:

 void colorReduce(const Mat& Image,Mat& outImage,int div)
 {
     outImage.create(Image.size(),Image.type());
     MatConstIterator_<Vec3b> it_in=Image.begin<Vec3b>();
     MatConstIterator_<Vec3b> itend_in=Image.end<Vec3b>();
     MatIterator_<Vec3b> it_out=outImage.begin<Vec3b>();
     MatIterator_<Vec3b> itend_out=outImage.end<Vec3b>();
     while(it_in!=itend_in)
     {
         (*it_out)[0]=(*it_in)[0]/div*div+div/2;
         (*it_out)[1]=(*it_in)[1]/div*div+div/2;
         (*it_out)[2]=(*it_in)[2]/div*div+div/2;
         it_in++;
         it_out++;
     }
 }

4.图像的领域操作:
很多时候,我们对图像处理时,要考虑它的邻域,比如3*3是我们常用的,这在图像滤波、去噪中最为常见,下面我们介绍如果在一次图像遍历过程中进行邻域的运算。

下面我们进行一个简单的滤波操作,拉普拉斯算子:[-1 –1 -1;-1 8 –1;-1 –1 -1]。(能使图像变的尖锐)

void Laplacian(const Mat& Image,Mat& newImage)
{
    newImage.create(Image.size(),Image.type());
    int nr=Image.rows;
    int nc=Image.cols;
    for(int i=1;i<nr-1;i++)
    {
        const uchar* line1=Image.ptr<uchar>(i-1);
        const uchar* line2=Image.ptr<uchar>(i);
        const uchar* line3=Image.ptr<uchar>(i+1);
        uchar* outData=newImage.ptr<uchar>(i);
        for(int j=1;j<nc-1;j++)
        {
            outData[j]=saturate_cast<uchar>(8*line2[j]-(line1[j-1]+line1[j]+line1[j+1]+line2[j-1]+line2[j+1]+line3[j-1]+line3[j]+line3[j+1]));
//staturate_cast<typename>是一个类型转换函数,程序里是为了确保运算结果还在uchar范围内
        }
    }
    newImage.row(0).setTo(Scalar(0));
    newImage.row(newImage.rows-1).setTo(Scalar(0));
    newImage.col(0).setTo(Scalar(0));
    newImage.col(newImage.cols-1).setTo(Scalar(0));
}

原图像
原图像
先cvtColor函数转换成灰度图,在用拉普拉斯算子2进行边缘提取的结果
用cvtColor函数变为灰度图后进一步用拉普拉斯算子提取边缘的输出图像
补充:当形参不是引用的时候发生错误。

相关文章推荐

重新学习2.0以上OPENCV(基于MAT类型)1

一直没有好好系统的做编程的学习工作,现在才发现,做好笔记是多么重要。。。 参考手册地址:http://docs.opencv.org/2.4.13.2/(中文的虽然看起来简单,但存在很多问题。。。)...

PHP重新学习(二)——PHP数据类型

PHP支持8种原始数据类型 四种标量类型:boolean(布尔型)、integer(整型)、float(浮点型,和double是等效的)、string(字符串); 两种复合类型:array(数组)、o...

Java数据类型重新学习

Java的数据类型结构如下 基本数据类型和引用数据类型的区别在于,基本数据类型是值传递,而引用数据类型是引用传递。区别如下 int a = 5; 基本数据会直接在堆存下a=5; int a ...

【Java重新学习】多线程-2

锁是控制多个线程对资源进行访问的工具。 aschronized同步代码块对于锁的操作是隐式的。 (JDK5将同步和锁封装成了对象,并将操作锁的隐式方式定义到了该对象中。将隐式操作变...

SSH-经典的三大框架 我回来了, 重新学习 J2EE 之路

已经一年多配置过 ssh框架,借空闲时间重新试试这个经典框架,因为我就是从这里开始入门的。本文摘自 博客大神 http://blog.csdn.net/lishuangzhe7047 一个女程序员...

【笨鸟先飞】Java重新学习日记2---控制流程

控制流程主要有2大类,判断和循环。   其中判断是最为重要的核心,是所有编程语言都必须的东西,也是所有逻辑的实现。   if判断语句   If判断语句是单一判断,看if(判断){内容} ...
  • dax120
  • dax120
  • 2017年07月25日 18:02
  • 59

cocos2d-x重新学习的经历(第一天)---使用animation播放动画

大一下 学习cocos2d-x 做了点小东西,后来因为一些原因没有继续。 趁着假期,再重学一下,顺便做一些小东西吧。                                ...
  • ez_wzr
  • ez_wzr
  • 2013年02月08日 23:28
  • 579

【笨鸟先飞】Java重新学习日记6---类的使用(2)

关于类的使用,一些简单知识的整理,看看有什么比较常用的,以及在我的工作经历中,最常见遇到的场景, 进行总结和梳理。   上一章,回忆了关于类的3大组成部分的一些特征。下面我继续一边看书,一边回忆一...
  • dax120
  • dax120
  • 2017年07月31日 19:21
  • 39

第一天重新学习Struts2的体验

在学完一个ssh的小项目中,发现自己对于很多问题是有很大的问题存在,一开始在跟着传智博客的视频做OA项目的时候,就知道自己对于三大框架其实掌握的并不好,在项目中有太多的问题,之前跟着尚硅谷的视频做一个...

opencv学习之Mat数据类型

Mat::~Mat Mat的析构函数。 C++: Mat::~Mat() 析构函数调用Mat::release()。 Mat::operator = 提供矩阵赋值操作。 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:重新学习2.0以上OPENCV(基于MAT类型)2
举报原因:
原因补充:

(最多只允许输入30个字)