算法理解-粒子群算法(一个计算例子)

本文介绍了粒子群算法(PSO)的原理和求解流程,通过一个计算例子展示其应用。相较于遗传算法,PSO更简单且参数调节少,但收敛稳定性较差。PSO在寻找最优解时依赖于粒子的个人历史最佳位置和全局最佳位置,而遗传算法则是通过染色体共享信息。两者都是仿生优化算法,适用于并行计算和不受函数约束条件限制的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

沿用上一篇中遗传算法的求解例子,其中代码参考游皓麟的R语言预测实战(这是一本好书):

求解函数

通过下面函数的求解,对粒子群算法进行学习:

f(x)=xsin(10πx)+2x[1,2]

其函数图像为:
suitFun

求解流程与概念

原理

鸟(粒子)根据自身经验(自己经过的最高点)、以及所有鸟经验(所有粒子中的最高点)进行探索,每次飞的时间是1(迭代1次),速度是 v ,这一次飞过的路程 s=v1 (x的变化量),假如有奖励就过去,没有就停留在原地,再结合自身经验以及别人的经验思考,下一秒我要怎么飞比较好。
由于每次飞行时间是固定的,因此 = ,所以只需要考虑该如何结合其他信息来确定下一秒我飞行的速度。其思考过程用数学公式进行表达则为:

vkid=wvk
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值