处理机调度

在操作系统中,进程的数量往往高于处理机的数量,进程会竞争处理机资源,而处理机资源分配由进程调度程序完成,由进程分派程序具体执行。进程调度程序要求采用一定的算法,动态的把处理机公平和里搞笑的分配给就绪队列的每个进程。

1、作业调度:

作业调度又被称为宏观调度或高级调度,作业调度的主要功能是根据作业控制块中的信息,审查系统能否满足用户作业的资源需求,以及按照一定的算法,从外存的后备队列中选取某些作业调入内存,并为它们创建进程、分配必要的资源。然后再将新创建的进程插入就绪队列,准备执行。因此,有时也把作业调度称为接纳调度。一般的批处理操作系统中,大多配有作业调度,而在其它系统中不需要进行作业调度,作业调度的频率比较低,一般为几分钟一次

OS向用户提供一组作业控制语言,用户用这种语言书写作业说明书,然后将程序、数据和作业说明书一齐交给系统操作员。

作业说明书在系统中生成一个称为作业控制块(JCB:job control block)的表格。从而,操作系统通过该表了解到作业要求,并分配资源和控制作业中程序和数据的编译、链接、装入和执行等。
为了管理和调度作业,在 多道批处理系统中为每个作业设置了一个作业控制块,如同 进程控制块是进程在系统中存在的标志一样,它是作业在系统中存在的标志,其中保存了系统对作业进行管理和调度所需的全部信息。
作业控制块是作业在系统中存在的唯一标志,即一个作业控制块对应一个作业。操作系统根据作业控制块了解作业的情况,同时又利用作业控制块控制作业的运行。
作业控制块包括:作业名、作业类型、资源要求、当前状态、资源使用情况以及该作业的优先级等。

2、进程调度:进程调度是指就绪队列中哪个进程获得处理机,并将处理机分配给该进程。具体实现分配处理机的是分派程序,分派程序的频率非常高,几十毫秒一次,常驻内存

3、交换调度:中级调度,外存中具有运行条件的就绪进程调入内存,将内存中就绪或阻塞队列交换到外存以让出空间资源。交换调度主要涉及内存管理与扩充,在采用虚拟存储管理技术的系统中交换调度被页面调入策略、页面置换策略和页面清除策略取代。

4、进程调度准则:1、处理机利用率,尽量让昂贵的处理机一直运行

2、吞吐量:单位时间内完成的进程数量尽可能多

3、周转时间:作业提交到作业完成所花费的时间

4、后被时间:作业到达外存后等待进入内存的时间

5、等待时间:就绪队列到获得处理机的时间

6、响应时间:提交请求到第一个响应输出的时间

1、引起进程调度的事件:

1、进程运行完毕或等待某件事情发生如io,数据等不能继续运行

2、在进程通信和同步过程中运用了某种原语如p操作

3、抢占式调度机制中优先级更高的进程进入就绪队列或从系统调用中返回;

4、在时间片轮转法中时间片用完

2、调度队列:每一种阻塞原因,或每一类设备都有自己的阻塞队列,后面因为相同原因阻塞的pcb以链表的形式组织

3、分派程序:进程调度程序决定哪一个进程获得处理机,分派程序具体执行分派处理机的任务。首先将正在运行的进程的处理机状态保存在该进程的pcb寄存器组,然后从就绪队列中将调度程序选中的进程的pcb寄存器组中取出其处理机状态重新布置处理机现场,装载处理机状态信息寄存器,程序状态寄存器,若干通用寄存器,程序计数器等信息。

调度方式:

1、不可抢占式:一旦处理机分配给某个进程后就让他一直执行下去直到,该进程完成或者发生某件事而阻塞

2、可抢占式:抢占原则:优先级抢占,短进程抢占,轮转原则。

调度算法:

1、先来先服务

2、短作业优先

3、高响应比优先

4、高优先级先调度

5、时间片轮转

6、多级反馈队列调度算法:设置多级就绪队列,优先级由高到低,时间片长度由低到高,当新进程或作业到来首先放到第一级队列的尾部,同队列按照先来先服务的调度执行,如果进程在第一级队列的时间片轮转完成后还没有执行完毕,进入下一级队列,队列之间是抢占式的优先级。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值